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Abstract

The number of annual graduates with STEM degrees has grown dramatically over the past
decade. Despite this growth, many students enrolled in STEM struggle to complete their pro-
gram. An inherent feature of STEM education is that it has a natural cumulative learning
structure which makes learning advanced skills in STEM quite challenging. This paper is the
first to credibly estimate the cumulative learning technology in a foundational STEM course.
Doing so is incredibly challenging as precise measures of effort inputs are typically unavailable
and are also dynamic endogenous choice variables. To overcome such challenges, I first gather
rich panel data covering nearly 3,700 undergraduates at a large public university taking an online
introductory programming course that has a cumulative structure. The online learning envi-
ronment serves to monitor students’ effort allocation and knowledge accumulation at each stage
of the learning process. Then I carry out a field experiment which generates period-by-period
exogenous variation in effort allocation, enabling me to identify dynamic interactions across
effort inputs in the learning technology. I find evidence of dynamic learning complementarities
as the marginal benefit to studying in each learning period is increasing in prior knowledge ac-
cumulated. This result suggests that students studying effectively should front-load their effort
allocation, but the opposite behaviour is documented in the data. The findings in this study
have implications for effective learning strategies and approaches to course design.
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1 Introduction

STEM education has expanded rapidly over the past decade as technical skills are fundamental

to the development of any modern technological society (Hanushek and Woessmann, 2015). The

number of students conferring STEM degrees in the US, for example, has increased from around

472,000 in 2009 to around 733,000 in 2018 (US National Centre for Education Statistics). Policy

makers continue to call for a dramatic increase in the supply of STEM majors, and substantial gov-

ernment funding has been allocated towards STEM education with a focus on promoting computer

science.1

An inherent feature of STEM is that the learning process is typically cumulative. Consequently,

acquiring advanced skills in STEM is challenging as students must first obtain mastery in preceding

foundational concepts.2 The cumulative learning structure of STEM can cause students to perma-

nently fall behind if they do not exert sufficient effort learning fundamental skills. Additionally, it

is challenging to design STEM courses as their large class sizes give rise to heterogeneity in stu-

dents prior preparation and organizational skills to learn effectively. Given these challenges, many

students struggle to complete their STEM majors and dropout during their first two years of uni-

versity.3 Then understanding the effective learning process is especially important in foundational

STEM courses as they are mandatory prerequisites for all other advanced STEM coursework.

This paper is the first to credibly estimate the cumulative learning technology which maps

dynamic effort inputs into learning outcomes in a foundational STEM course. The specified tech-

nology is cumulative with multiple learning periods and allows for past knowledge to persist into

the future. The learning technology also incorporates dynamic learning complementarities as the

productivity of effort in a learning period can depend on previous effort exertion. Estimating the

learning production function helps inform effective learning strategies and approaches to course

design.

Identifying such a cumulative learning process is incredibly challenging for several reasons.

First, repeated learning measures to observe the knowledge accumulation process are not typi-

cally available. Second, precise students’ effort inputs such as study time allocation are typically

unobserved. Although data on student performance on various cognitive assessments are read-

1The US Department of Education spends around $400 − $500 million on promoting STEM education annually.
Around 25% of this funding is typically allocated towards computer science education.

2Introduction to programming, for example, has a standard cumulative structure where students learn numerical
operations, functions, and then algorithms.

3Stinebrickner and Stinebrickner (2012) and Stinebrickner and Stinebrickner (2014) find that drop-out decisions
can be largely explained by students learning about their academic abilities and being overoptimistic about succeeding
in a science program at college entry.
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ily available, administrative data on students’ precise study time allocation is nearly nonexistent.

Third, the effort inputs across the cumulative learning process are dynamic endogenous choice

variables. Then period-by-period exogenous variation in effort is required to identify the dynamic

learning complementarities, even though just the availability of a single exogenous shock in effort

is a rare occurrence.

I develop a unique approach to address all theses challenges for the first time. I first gather

unique administrative data from a prominent online STEM course which enables me to precisely

measures effort allocation and corresponding knowledge accumulation throughout the entire course.

I then carry out a field experiment which generates exogenous variation in effort allocation, cred-

ibly identifying each element of the cumulative learning process. The estimates of the learning

technology help inform effective learning strategies for students in STEM. Lastly, I use rich survey

data to study heterogeneity in effort allocation across different types of students.

The specific setting for my analysis is a large online introductory programming course offered

each 12-week semester at a research-intensive Canadian university. The course uses an open-

source online learning platform where students learn content on their own by watching videos and

doing practice problems posted on a weekly basis. In addition to weekly low-stakes homework

assessments, the course also includes two high-stakes assessments: a midterm and a final exam.

Given that students in the course learn most of the material through self-study, the course also

employs a voluntary online student discussion board to further support students. The discussion

board facilitates learning by allowing students to interact with each other, discussing the course

material and collaborating on assignments in an instructor-moderated online environment.

I collect data on nearly 3,700 students who consented to participate in the research.4 The rich

administrative data include time-stamped student interactions with the online learning environ-

ments throughout the entire semester. These data enable me to measure total online study time

at each stage of the learning process precisely. Evidence from the administrative data suggests a

lack of online participation activity by a non-trivial proportion of students in the control groups of

the field experiments. For example, each week around 15− 20% of students spend no time whatso-

ever doing the homework. I supplement the administrative data with survey data (as mentioned),

collecting demographic information from students and further eliciting their behavioural character-

istics, such as a their attentiveness. I find that more attentive students have a higher propensity

to start the low-stakes homework assignments and have higher awareness of course resources.

To identify the cumulative learning STEM process, I conduct a field experiment to generate

4The student consent rate is around 87% and over 40,000 student-week observations are available.
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exogenous variation in students’ effort allocation. The interventions considered in this study can

be characterized as ‘targeted informational reminders nudges,’ as they prompt a student to take a

specific action, provide simple instructions for doing so, and lastly, remind the student to complete

the task. The nudge is a homework reminder message which is deployed repeatedly across several

weeks throughout the course and is aimed at promoting further participation in online homework.

The reminder message informs students of the upcoming homework deadline, prompts them to set

aside time in their schedule to work on the homework, and provides a direct link to the homework.

I find that receiving an additional reminder message, on average, induces students to spend an

extra 23 minutes on the corresponding homework assessment. The reminder messages are most

useful for inattentive students, who are less likely to be aware of upcoming homework deadlines.

The deployment of randomized homework reminders throughout the course provides an op-

portunity to estimate the cumulative learning technology as a function of students’ study time

allocation. Reflective of the actual course structure, the learning process is estimated separately

across three learning stages: basic, intermediate, and advanced. The benefit of effort in a learning

stage depends on the cumulative technology, which has two endogenous variables – the total study

time in the current learning stage and the knowledge accumulated in the previous learning stage.

I construct instruments for both endogenous inputs using the number of randomly assigned home-

work reminders at each learning stage, allowing me to identify the parameters of the cumulative

learning technology. I find a positive marginal return to effort at each stage of the learning pro-

cess and document evidence of dynamic complementarities. For example, in the advanced learning

stage, I find an additional hour of online study time increases final exam grades by 0.11 SD, and

this marginal benefit increases by 0.07 SD for every 1 SD increase in intermediate stage knowledge.

The estimated model has implications for effective learning strategies for students and ap-

proaches to course design for instructors. Given the cumulative nature of the STEM learning

process, students learning effectively should sufficiently front-load their effort allocation to achieve

proficiency in the basic concepts before moving onto learning more advanced topics. Contrary

to this learning strategy, I find that students on average, however, increase their effort supply as

the course progresses. The evidence suggests that many students do not internalize the cumula-

tive learning process when allocating effort. In a follow-up paper, I study the extent to which

front-loading the grading incentives can help improve learning outcomes for students who learn

ineffectively.

Although the analysis in this paper focuses on a single online STEM course, there are good

reasons to think the results can inform the learning process in foundational university courses more
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broadly. Many students enrolled in first-year core courses with large class sizes are going to find it

difficult to obtain individualized guidance on how to learn effectively. First-year university courses

also typically have a cumulative structure, especially in STEM, with considerable heterogeneity in

the student body. Then students who do not internalize the cumulative learning process and are

at risk of falling behind early on will be present in any large foundational university course. Most

popular learning management systems are equipped with online homework hosting capabilities

and student activity analytics. Then these online facilities can be used monitor student effort

allocation and knowledge accumulation to track whether they are learning effectively. In these ways,

understanding the learning process using the approach considered in this paper can be applied to

both online courses and traditional in-person foundational university courses.

The rest of the paper is organized as follows. The next section places my analysis in the context

of the related literature. Section 3 provides information about the sample and describes the online

homework and discussion board environments. Section 4 outlines sources of data collection and also

presents descriptive statistics. The experimental design and the key features of the interventions are

discussed in Section 5, and corresponding results are presented in Section 6. A model of dynamic

effort supply is discussed in Section 7, and the cumulative learning process is estimated in Section

8. Finally, Section 9 concludes and discusses avenues of future research.

2 Literature Review

This paper builds on several prior literatures. These include research that estimates cumulative

education production functions and those that uses field experiments to evaluate the efficacy of

various educational interventions, among others. In this section, I discuss these areas of prior

research in turn and highlight the ways in which my paper contributes to each of them.

First, my paper contributes to a body of research estimating the marginal learning returns to

student effort, an essential input to the education production function. Stinebrickner and Stine-

brickner (2008) estimates the returns to effort using self-reported diary data on time use from college

students, and also collect information on whether their roommate owns video games. The authors

use roommate ownership of videos games as an instrument for study time and find that increasing

study time by 1 hour a day increases the first semester GPA by around 0.3 - 0.4. More recently,

Ersoy (2021) uses administrative data from a popular language learning platform, Duolingo, to

measure causal learning returns to effort. In the study, students learning Spanish are randomly

assigned to complete a different number of lessons. The author finds that spending around a hour
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completing 9 lessons results in increasing achievement by 0.057 SD on tests that are external to

the online learning environment. My paper contributes to this literature by using administrative

data from a large prominent STEM course together with a field experiment to measure the causal

learning returns to study time and assignment completion.

Second, my paper also relates to the literature estimating cumulative education production

functions. Such cumulative technology maps present and historical inputs to current learning

outcomes. Todd and Wolpin (2007) estimate a cumulative production function for children as a

function of child ability and history of family inputs. The authors find that lagged family inputs

are significant predictors of cognitive achievement. Consistent with a cumulative technology, Aizer

and Cunha (2012) find larger IQ gains from preschool enrolment for children with higher stocks

of early human capital. Gilraine (2016) uses year-to-year variation in school accountability to

identify dynamic complementarities in school inputs. The author finds a 0.18 SD increase in test

scores for students who are in schools that were subject to school accountability in two consecutive

periods relative to those subject to accountability only in the previous period. Appendix A.1

describes the education production function literature in more depth. Although the education

production function literature includes parental and school inputs, time varying students inputs

are not incorporated into the learning technology. Consequently, policies designed to increase

educational attainment in these papers target either parental or school inputs, and implicitly assume

that students’ effort is held constant. The prior literature has yet to identify the cumulative

education production as a function of student effort, important for designing dynamic policies to

encourage students to learn effectively. I contribute to this literature by estimating the cumulative

learning technology as a function of students’ study time allocation. It uses exogenous variation in

student study time at each learning stage to identify dynamic complementarities in student effort

inputs.

Finally, the field experiments in my paper contribute to a large body of recent work investi-

gating the efficacy of behavioural nudges in promoting desirable academic behaviours in higher

education.5 Smith et al. (2018) conduct a field experiment to evaluate the efficacy of a personalized

email message which informed students how their assignment grade will influence their final grade,

based on their current grade in the course. The authors find that students who received the message

achieved a 4 percentage point higher grade on the assignment. Oreopoulos et al. (2018) investigate

the effectiveness of a planning module, which involved a group of randomly selected students build-

5Kizilcec et al. (2020) and Harackiewicz and Priniski (2018) discuss a variety of behavioural interventions in the
literature that are focused on improving academic outcomes in higher education.
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ing a weekly calendar and receiving follow-up reminders from an upper-year coach. The authors

find that the online planning module marginally increased self-reported weekly study time, but

the increase in weekly study time did not result in an increase in academic performance outcomes.

Clark et al. (2020) conduct an experiment to test whether college students who set goals exert more

effort and achieve improved learning outcomes. The authors find setting task-based goals increased

task completion and subsequent course performance. However, setting performance-based goals

did not result in a significant increase in learning. Appendix A.2 includes a more extensive list of

related papers exploring student effort choices. I add to this literature by using administrative data

on student effort and showing that targeted informational reminders can improve achievement by

nudging inattentive students to participate further in learning activities.

3 Institutional Background

The setting for the study is a first-year undergraduate online introductory programming course

offered at a large research-intensive public university in Canada. This section describes the course

structure and the platforms used to facilitate student learning in the course.

Cumulative Course Structure. The course assumes no prior programming knowledge and

teaches programming fundamentals using Python (see Appendix B.1 for the course outline). It

is offered every semester and typically enrols around 1,000-1,500 students in the Fall and Winter

terms, and around 200-400 students in the Summer term. Although the course is offered at the

first-year level in the Computer Science (CS1) department, it consists of CS-majors and non-majors

alike and is not exclusive to first-year students; many students who enrol have no programming

experience.

The course content can be naturally partitioned into three stages: basic, intermediate, and

advanced. Weeks 1 - 4 cover the foundational concepts of programming, such as variable declaration

and loops. Then, weeks 5 - 8 cover intermediate concepts such as nested loops and dictionaries.

Finally, building on the basic and intermediate learning stages, the course concludes by covering

advanced concepts, such as algorithms and objected oriented programming. Although the content

in week 1 requires no prior programming experience, the topics covered in all others weeks are

cumulative, as they build on concepts covered in past weeks.6

The coursework consists of low-stakes weekly homework assessments and also higher stakes

6For example, learning nested lists and nested loops in week 6 requires an understanding of basics of loops and
lists, covered in weeks 4 and 5, respectively.
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assessments, which include a midterm and a final exam. The homework in the first two weeks is

optional (i.e., they are ungraded) to allow students to practice interacting with the online learning

environment.7 The midterm and final exams are typically written in weeks 5 and 13, respectively.

Additionally, students can obtain course credit by participating in two research surveys that are

deployed at the start and end of the course.8 The graded homework assessments count for 25% of

the students’ overall course grade. The midterm counts for 30% of the students’ course grade, and

the final exam count for the remaining 45%.

The Online Learning Platform. The weekly homework modules are hosted on an open-source

online learning environment created by the computer science department of this institution. The

environment is an interactive online platform that allows education providers to bundle video

instruction together with multiple choice and open-ended programming problems. Distinct content

on the online homework platform is separated by weeks, and each week students are assigned to

watch videos and complete follow-up problems. Appendix B.2 further illustrates the user interface

of this learning environment. The online learning platform for the course contains around 133

instructional videos and 401 problems, assigned across 12 weeks through homework assessments.

The Online Peer Discussion Board. The course offers an interactive online course discussion

board where students can discuss course material. Students can participate by asking questions,

help their peers by writing answers, and engage in discussion with peers by commenting on existing

questions and/or answers. Posts on the discussion board are organized per week as new content

is introduced weekly. Appendix B.3 describes the user interface of the discussion board in more

detail. Although encouraged, participation in the discussion board is completely voluntary, and

students are not awarded any additional course credit for participation.

Learning Management System. Canvas is the learning management system (LMS) employed

by the course involved in this study. It is used to set up and organize a digital learning environment.

In my setting, Canvas is used by instructors to post announcements, manage course deadlines, and

release student grades. Students also have a message inbox on Canvas that is separate from their

institutional email. Instructors can send student messages through Canvas, and such messages

7Students can enrol into the course up until the second week. Making the homework in the first two weeks optional
also reduces the logistical burden on instructors, as otherwise students who enrol late may demand alternative make-
up assessments, or request a grading scheme adjustment.

8Both surveys were deployed online using the Qualtrics survey platform. Students earn a 1% bonus credit for each
research survey they complete.
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are received in students’ Canvas messages inbox and also automatically forwarded to students’

institutional email.

4 Data and Descriptive Statistics

This study uses a combination of rich student-level administrative and survey data to characterize

online learning participation behaviour for different types of students. All data are gathered from

the introductory programming course (introduced above), offered during the Winter 2020, Fall

2020, Winter 2021, and Summer 2021 academic semesters at a large research-intensive Canadian

university. The data are collected and merged together from the following sources: online surveys, a

learning management system, an online homework platform, and the online peer discussion board.

Pilot data were also gathered from the Summer 2019 and Fall 2019 cohorts and served to finalize

the design of the primary data collection that is the focus of this section.9 The timeline of the

complete data collection exercise is shown in Figure 6.

Student Surveys. The baseline survey collects information about students’ demographics and

elicits information about their behavioral characteristics; the final survey gathers data on various

course inputs, interactions with peers, and elicits student feedback about different components of

the course. Each survey takes around 20 - 25 minutes to fill out, and is voluntary, although students

are given around 1% course credit for completing each survey. The response rate is around 91%

for the baseline survey and 86% for the end-line survey.10 The baseline survey contains a consent

form, which asks students to participate in the study by allowing their data to be used for the

purposes of academic analysis and research. In addition to the baseline survey, students are also

given an opportunity to consent to be a participant of the research study on the online homework

environment. Overall the consent rate is around 87%. The sample of total consenting students who

completed the course consists of 3,686 students.

Student Activity on the Learning Management System. I collect student activity data

from student interaction reports captured on Canvas. This includes the total number of announce-

ment views, aggregate page views, and a daily list of all students enrolled in the course. The list

of students enrolled in the course is retrieved daily to track attrition of students from the sample

9Pilot data collection involved having 30-minute recorded interviews with several students, conducting online
surveys using various software, and prototyping various interventions.

10The research surveys are announced through the learning management system, and students who did not complete
the survey two days before the deadline received a reminder to do so.
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over the study period.11

Student Achievement. Student achievement data are collected from the weekly online home-

work, the midterm, and the final exam. This high-frequency achievement data allows me to assess

student learning throughout the course. The primary measure of student learning is their cu-

mulative final exam grade, which I standardized to have a mean of 0 and standard deviation of

1.12

Student Discussion Board Activity Data. Students’ discussion board registration status is

collected at the weekly level. Thus, I observe the number of weeks a student is registered for the

discussion board. Additionally, I also observe time-stamped data on all contributions (question,

answers, or comments), and the number of unique posts viewed by students each week. Overall, I

observe discussion board registration, contributions, and ‘consumption’ decisions.

4.1 Student Study Time Data

Numerous types of student interactions with the online platforms are observed in the administrative

data, recorded to the nearest second. That is, the online platforms serve as a monitoring device in

terms of students’ learning activities. For example, observed interactions include the times when

students log in or out, play or pause an instructional video, submit problem solutions, and write

in the discussion board. The availability of such rich time-stamped interaction-level data enables

me to construct a precise measure of online study time at each stage of the learning process. The

study time measure includes minutes spent watching instructional videos, working on homework

problems, and reading and writing posts on the discussion board. I will now outline the construction

of study time for the online homework, and for the online peer discussion board separately.

Online Homework Study Time. I couple the students’ time-stamped online interactions to-

gether with a basic clustering algorithm to identify periods of learning activity at each stage of

the course. The time-stamped interaction data are used to measure the minutes spent watching

instructional videos and doing homework problems. The procedure is built around the empirical

observation that students tend to study in approximately 30-minute blocks throughout the week

(e.g., Tuesday from 6 - 6:30 pm). Each block of homework activity begins with students interacting

11The data are retrieved using the Canvas Application Program Interface.
12The final exam is a 3-hour comprehensive assessment that evaluates overall understanding of introductory pro-

gramming in Python.
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with the online learning platform for at least 5 minutes, and concludes after 5 minutes of inac-

tivity. Video watching time is computed based on when students play or pause the instructional

videos. Students’ time spent attempting homework problems is measured using information when

students submit problems and click to view the next problem. Then, online homework study time

is constructed by aggregating all blocks of learning activity for each stage of the course.

Online Discussion Board Study Time. Although the administrative data set includes the

number of posts written and read at each stage of the learning process, the time spent on these

activities is not observed. To fill this gap, the final survey asks students the average time they

spend on average writing and reading a post in minutes (see Appendix C.3 for survey questions).

The administrative data on student engagement, and corresponding student-level survey data on

average time use are used together to measure the minutes spent on the discussion board at each

learning stage.13

Distribution of Online Study Time. Total online study time at each learning stage aggregates

minutes spent on the online learning environment together with the minutes spent on the online

discussion board. Figure 1 below shows the distribution of online study time at each learning

stage of the course. This figure shows that, on average, student study time increases as the course

progresses. Students exerting more effort at later stages of the course is consistent with the grading

incentives, as the homework in the first two weeks is optional, the midterm falls in the intermediate

stage, and the final exam is at the end of the advanced stage.

Figure 1: Distribution of Study Time by Learning Stage
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Notes: The figure presents the distribution of total online study time for each stage of the course: basic, intermediate,
and advanced. All histograms use a bin width of 60-minutes.

13For example, suppose a student views 11 posts and writes 5 questions. If this student reports to taking 3 minutes
to view a post, and 6 minutes to write a question in the survey, then their estimated time spent on the discuss board
is 11× 3 + 5× 6 = 63 minutes.
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4.2 Student Attentiveness

The baseline survey elicits student attentiveness through a series of questions. Each question is

measured on a 7-point Likert scale, and a student’s response can vary between strongly disagree

(i.e., a response value of 1) to strongly agree (i.e., a response value of 7). To measure attentiveness,

one question students are asked whether “I tend to read all the instructor announcements for this

course.” All questions relating to students’ attentiveness are included in Appendix C.2. To construct

a continuous index of the behavioral responses, replies to all relevant questions are aggregated

together so that they are increasing in attentiveness. The distribution of student attentiveness is

shown in the following figure:

Figure 2: Distribution of Attentiveness
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Notes: The figure presents the distribution of the standardized attentiveness index. All histograms use a bin width
of 0.5 SD.

The apparent left skew of the attentiveness distribution suggests that most students self-report

themselves to be attentive.

4.3 Summary Statistics

Table 1 presents a rich set of summary statistics related to student demographics, characteristics,

behavioral information, homework participation activity, and overall study time. Although com-

puter science graduates are primarily male (Baer and DeOrio, 2020), there is no significant gender

disparity in my sample as 49% of the students are female. Panel A shows the course is offered as a

first-year course, but is not exclusive to first-year students, as around 38% of students are beyond

their first year. Additionally, around 28% of students are pursuing non-STEM majors. Consistent

with only 53% of students being domestic Canadians, only around 29% of students speak English
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at home. Appendix C.1 contains the survey questions used for gathering the student demographics

and other characteristics.

Panel B of Table 1 shows that 87% of students do not have any programming experience prior to

taking the course. Panel C shows that around 76% of students are attentive. Panel D indicates that

around 16% of students do not attempt the low-stakes homework each week. On average, students

spend around 25 minutes watching videos each week, and 2 hours working on each homework

assignment. Students who registered for the discussion board spend around 28 minutes each week

on making posts or viewing content.

5 Experimental Design and Description of Interventions

This section describes the rationale behind the interventions that were deployed and outlines the

experimental design for allocating students to treatment.

5.1 Design of Experiments

The sample frame eligible to receive the nudges consists of all students who consented to participate

in research during the Winter 2020, Fall 2020, Winter 2021, and Summer 2021 academic terms. As

discussed in the previous section, the data collection results in a sample of 3686 study participants.

The study followed a double-blind protocol for implementing the randomized interventions. That

is, students were not informed of their treatment status but were aware that a study was being

conducted for the purposes of improving course design. The course instructors were aware of the

interventions that were being deployed but were not informed about the students’ treatment status.

I performed the randomizations on an anonymized dataset, and I was not part of the instructional

team. Prototyping interventions during the pilot data collection in Fall 2020 informed the design

of the interventions presented in this section.

5.2 Description of the Intervention

The interventions considered in this study can be categorized as ‘targeted informational reminders’

as their design includes the following elements: 1) they prompt students to take a specific action, 2)

they provide information on how to clearly execute the action, and 3) they serve as a reminder for

the specified task. The design of the nudge is inspired by insights from psychology and behavioural

economics research (Damgaard and Nielsen, 2018). In particular, the intervention is designed to

nudge inattentive students who may have a tendency to forget homework deadlines.
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Homework Reminder Messages. The reminder messages were aimed at promoting students

to further participate in their weekly low-stakes homework. Reminders are only sent for the graded

homework assessments after week 2.14 The homework reminder is composed of the following three

elements: 1) reminding students of the upcoming homework deadline, 2) prompting them to set

aside time in their schedule to next make progress on the homework, and 3) including a direct

link to the homework assessment. Appendix D.1 shows the template of the homework reminder

message. The reminder messages were sent within 48 hours after the homework assignment was

released and are deployed using the learning management system (i.e., Canvas). Students would

receive the reminder both in their Canvas and institutional email inbox.

For students who had not completed the homework before the deployment of the reminder

message, half of them are randomly assigned to receive a homework reminder.15 The reminder

messages were sent throughout the course and were re-randomized with each deployment. Conse-

quently, the number of total homework reminders a student receives follows a binomial distribution

with 10 trials and a 0.5 probability of success. Figure 7 illustrates the assignment of students to

the number of homework reminders.16

5.3 Statistical Validity of Experiments

I now discuss the statistical validity of the experimental design by showing the following: 1) pre-

treatment characteristics are balanced across the control and treatment group, 2) there is no dif-

ferential attrition by treatment status, and 3) results are robust to spillovers.

Independence of Treatment Assignment. The aim of the experiments is to identify Intent

to Treat (ITT) effects of interest. The ITT is identified as students are randomly assigned to

a control of treatment group each week. I investigate the validity of the random assignment by

testing whether the pre-treatment student demographics and characteristics are balanced across the

experimental conditions. I do so by standardizing each pre-treatment control and regressing these

on the number of reminders received. Figure 8 shows that students who are assigned to receive

14The courses instructors would make important announcements in the first two weeks to get students started
with the course. Consequently, the reminders were not sent during this week to avoid crowding out the instructors’
announcements.

15Each week, only around 5%− 10% of students completed the homework within 48 hours of release.
16Alternatively, students could have been uniformly randomized to receive between 0 to 10 reminders at the start

of the course. This design was not implemented due to caveats that were discovered while piloting the reminder
messages in the Summer 2019 and Fall 2019 cohorts. Since a small portion of students complete the homework soon
after its release, these students should not receive a reminder. Additionally, it was important to check with the
instructor each week that the reminder message would not crowd-out any important announcement that they may
of wanted to make.
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an extra homework reminder are statistically identical in their demographics and characteristics at

baseline.

Student Attrition. Student attrition is natural in my setting as students who initially enrolled

and consented to participate in the study can choose to drop out from the course afterwards. In

my sample of 4091 students who initially agreed to participate in the study, around 90% of them

completed the course. Table 2 examines whether the number of reminders received impacts the

propensity to drop out. The analysis suggests that the reminder messages did not cause students

to dropout of the course directly as all treatment coefficients are close to 0 and the corresponding

p-values are larger than 0.1.

Well-defined Treatment Assignment. For the treatment allocation to be well-defined, the

following two assumptions must hold true: 1) the treatment level is unique so that potential

outcomes are well defined, and 2) the treatment applied to one student does not affect learning

outcomes of other students. The intensity of the homework reminders is homogenous across the

treatment groups as all students in the treatment condition receive the same reminder. Therefore,

the potential outcomes corresponding to the experimental conditions are well defined.

Next, I discuss the possibility of spillover effects across students. Since students can interact

with each other on the discussion board and work towards solving problems, it is possible that

students in the treatment group who received the reminder will interact with the control group

who did not receive any reminder. Assuming the reminder increases an outcome of interest (e.g.

more participation on homework problems), that can result in positive spillovers to the control

group through information sharing (e.g., answering questions of control group students) or peer

effects (e.g., control group student mimicking behaviour of treatment group student). Such positive

spillover effects will result in downward biased effect sizes.17

Although the experimental design does not guard against such spillovers in this setting, the

online nature of the course mitigates standard in-person student interactions that would typically

be present. Additionally, I am able to leverage certain features of the data collection for robustness

analysis. The baseline survey collected data on whether students are in a study group, the number

of other students in the course they study with, and how frequently they meet. The final survey

also directly asked students whether they discussed information shown in the reminder messages

17Upwards biased estimates due to information spillover are possible, but unlikely. For example, suppose students
in the control group discover that their peer in the treatment group received a reminder. Then the control group
student may feel discouraged and exert less effort because they are not being supported by the instructional team.
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with other students. I use this survey data to discuss the robustness of my primary results to

potential spillovers in the next section. Appendix C.4 includes the survey questions about student

peer interactions.

6 Experimental Results

This section discusses the results from the field experiment described in Section 5, and outlines the

corresponding empirical methodology. For simplicity of exposition and interpretation, the analysis

is carried out by aggregating the data so that the parameters of interest are estimated by a cross-

sectional regression with cohort fixed effects.

6.1 The Effect of Homework Reminders on Homework Participation

To measure the effect of receiving reminder messages on students’ homework participation, I esti-

mate the following specification:

Dic = δ0 + δ1RemindersFreqic + πc +X ′
ic∆+ ϵic,

where Dic is either the number of homework assessments completed or the total hours a student

spends studying; πc is cohort fixed effects; RemindersFreqic is total number of homework reminders

a student receives. Control variables Xic include student demographics and other pre-treatment

characteristics listed in Panels A and B of Table 1.

Table 3 presents the results from estimating the above specification. On average, receiving 5

additional reminders induces students to complete an extra homework assessment. Additionally,

the estimates show that receiving an extra reminder message increases the time spent on homework

by 23 minutes. Since students spend around 2.4 hours each week on the online homework platform,

receiving a homework reminder increases corresponding homework study time by around 16%. This

effect size is also statistically significant at the 1% significance level, with an F-statistic exceeding

100. Consequently, the frequency of reminders received will provide a strong first stage for inducing

exogenous variation in study time.18

Figure 9 illustrates the average number of homeworks completed by the number of reminder

messages received. Clearly, receiving more reminders encourages students to complete more home-

work. The figure also suggests that the marginal increase in homework completion is decreasing

with more reminders, although the apparent diminishing returns to homework reminders are not

18The F-statistic exceeds the threshold of 104.6 stated in Lee et al. (2022) for assessing a strong first stage.
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statistically significant.19

Mechanisms Underlying the Homework Reminders. Next, I examine whether the reminder

messages are more helpful for less attentive students. The final survey asked whether the students

found the reminder emails to be helpful in keeping on track with the homework assessments. Figure

10 illustrates the relationship between finding the reminders useful and a student’s attentiveness.

The significant negative linear association suggest that less attentive students are more likely to be

helped by the homework reminders. The evidence suggests that the homework reminders are most

effective at encouraging inattentive students to exert more effort.

6.2 The Effect of Homework Participation on Learning

Since students choose their level of homework participation, associating homework participation

with learning outcomes will likely result in biased estimates due to omitted variable bias. For

example, students who have a higher innate programming ability will obtain better grades on

course assessments, while exerting less effort than students with lower innate programming ability.

As a result, the returns to homework participation will be downward-biased through this unobserved

programming ability channel. To circumvent such issues of endogeneity, I use random assignment

to the number of homework reminders received as an instrument for homework participation.

I argue that email reminders are a valid instrument for homework participation as they are

randomly assigned to students (i.e., independent), do not directly affect learning outcomes (i.e.,

are excludable), and promote students to complete homework successfully (i.e., they are relevant).20

Relevance. A theoretical model presented in Ericson (2017) shows that reminders can be helpful

in task completion when individuals have a limited memory. I find empirical evidence consistent

with the models implication as Figure 10 shows that the reminder messages are perceived to be

most beneficial by more inattentive students. Additionally, Table 3 shows that on average the

reminder messages are successful in significantly increase effect exertion (as previous discussed).

Exclusion. Exclusion is violated if receiving homework reminders affects learning through chan-

nels aside from homework participation. This is plausible if the reminder message induces students

to also participate further, for example, on the online discussion board. Receiving reminders over

19Regressing homework completion on the reminder frequency and the square of the reminder frequency results in
a negative, but statistically insignificant, coefficient on the quadratic term.

20I assume a homogeneous treatment effects framework for simplicity. Under a heterogeneous effects framework,
monotonicity of the instrument and the absence of defiers can also be reasonably argued.
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time may also help students build better time management and organization skills, enabling them

to learn more by more efficiently using a given amount of study time. As the reminder message

directly targets the homework assessment, it is unlikely to affect participation on the discussion

board. Study habits and organizations ability will be well established prior to enrolling in the

course. It is unlikely a low intensity nudge such as receiving a few reminder messages will have

persistent effects on long term study habits.

Independence. Since students are randomly assigned to whether they receive a homework re-

minder for each homework assessment, then the number of reminders they receive is independent

of any observed or unobserved determinants of learning. Concerns around finite sample imbalances

across the type students who receive many reminders versus few reminders are alleviated by the

large sample of students involved in this study. Evidence to support the independence assumption

is presented in 8 (as previously discussed).

I now employ the frequency of reminders received as an instrument to estimate the causal effects

of homework participation on homework performance using the following 2SLS model:

ExamGradeic = λ0 + λ1Dic + πc +X ′
icΠ+ ϵic,

Dic = ϕ0 + ϕ1RemindersFreqic + πc +X ′
icΓ + ϵic

where ExamGradei denotes the final exam grade. Table 4 presents the 2SLS results. The estimates

show that completing one extra homework increases the final exam grade by around 0.18 SD.

Additionally, an extra hour spent studying through doing online homework increases final exam

grade by 0.09 SD. These estimates are statistically significant at the 1% level. The large effects

reflect the fact that the homework is the primary source of learning the course material in this

online STEM course.

6.3 Robustness to Spillover Effects

I now present two pieces of evidence supporting the view that the main results presented in this

section are not severely affected by spillover effects from treated to control students. First, only

around 9% of students in the final survey attested to discussing contents of the reminder messages

with their peers at least once. Therefore, information spillovers from the treatment to the control

group would be expected to be small. Second, around 17% of the students in the course are in

study groups, where they meet at least once a month and discuss course material. I investigate

whether the treatment effects for the reminder messages vary according to whether students are
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in a study group at baseline. The analysis is presented in Table 5. The results suggest that the

efficacy of the reminder messages does not vary according to whether a student is in a study group.

7 Theoretical Framework

In this section, a learning environment with a cumulative structure is conceptualized, where students

acquire knowledge by exerting effort over multiple learning stages. The framework formalizes an

effective learning strategy in courses with a cumulative structure.

7.1 The Environment

Consider N students in a course, who allocate total study time or ‘effort’ (e) across three learning

stages t ∈ {basic, int, adv}. Then, let Lt
i denote the amount of learning for student i during stage

t. Students can vary in their baseline human capital (h). All students are assumed to be forward-

looking who internalize the cumulative learning process when allocating effort.

7.2 The Student Effort Choice Problem

Students allocate their effort to maximize their total knowledge net of effort costs as follows:

max
(eti)t

Li(e
basic
i , einti , eadvi ;hi)− C(ebasici , einti , eadvi ), (1)

where C(·) is an convex function that is increasing in effort, representing the cost of effort exertion.

The learning technology is concave in each effort input, increasing in effort and baseline human

capital.

For simplicity of the exposition, we assume total learning can be separated as follows:

Li(e
basic
i , einti , eadvi ;hi) = Lbasic

i (ebasici , hi) + Lint
i (einti , Lbasic

i ) + Ladv
i (eadvi , Lint

i ).

That is, the amount of learning Lt
i in a given period depends on present effort eti, and previous

knowledge Lt−1
i .21 Similarly, I also assume the cost of effort is separable across learning stages:

C(ebasici , einti , eadvi ) = C(ebasici ) + C(einti ) + C(eadvi ),

imposing that student fatigue does not spillover across learning periods, a reasonable assumptions

if student ‘burn out’ from exerting too much effort is not a major concern in the learning setting.

21Given that course structure is assumed to be cumulative, Lt−1
i is used as a sufficient statistic for all prior

knowledge accumulation. Prior knowledge at the basic stage is denoted by L−1
i and is the baseline knowledge hi.
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Students exert effort until the marginal benefit of effort exceeds the marginal cost of effort. The

first order condition that characterizes effort exerted at the basic stage is:

dLi

debasici

=
dLbasic

i

debasici

[
1 +

dLint
i

dLbasic
i

(
1 +

dLadv
i

dLint
i

)]
=

dC

debasici

.

Assuming a cumulative learning structure with previous knowledge persisting into future learning

periods, then
dLint

i

dLbasic
i

> 0 and
dLadv

i

dLint
i

> 0. That is, exerting effort in the basic stage has spillover

learning benefits in the intermediate and advanced learning stages. Intermediate learning stage

effort is determined by the following equation:

dLi

deinti

=
dLint

i

deinti

×
[
1 +

dLadv
i

dLint
i

]
=

dC

deinti

.

Finally, effort in the advance learning stage is characterized by:

dLi

deadvi

=
dLadv

i

deadvi

=
dC

deadvi

.

As the advanced stage is the last learning period, there is no future spillover learning benefit from

exerting effort in the advanced stage. I will show that under reasonable assumptions, the effective

learning strategy in a course with a cumulative structure is to front-load effort allocation so that

ebasic,∗i > eint,∗i > eadv,∗i .

As course material typically becomes more challenging as the course progresses, the period

specific marginal benefit of effort decreases across learning stages:
dLbasic

i

debasici

>
dLint

i

deint
i

>
dLadv

i

deadvi

. The

persistence of learning from one period to the next will likely be less than 100%:
dLint

i

dLbasic
i

< 1

and
dLadv

i

dLint
i

< 1. Suppose that the persistence of knowledge from basic to intermediate exceeds the

persistence from intermediate to advanced (i.e.,
dLint

i

dLbasic
i

>
dLadv

i

dLint
i

) then marginal total learning benefit

of effort in the basic stage exceeds the intermediate stage (i.e., dLi

debasici

> dLi

deint
i

). Although such an

assumption may be strong, dLi

debasici

> dLi

deint
i

holds as long as
dLint

i

dLbasic
i

is sufficiently large. Under these

assumptions, the marginal total learning benefit of effort is decreasing as the course progresses

dLi

debasici

>
dLi

deinti

>
dLi

deadvi

.

Then clearly the optimal effort exerted decreases across the learning stages as illustrated by the

following figure:
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Figure 3: Effective Effort Allocation When Learning is Cumulative

Effort
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Notes: The figure illustrates the optimal effort allocation across the basic, intermediate, and advanced learning stage
as the intersection of the respective marginal benefit and marginal cost of effort curves. The marginal benefit of effort
shifts downwards across learning stages under a reasnoable cumulative learning structure.

7.3 Stylized Example

To intuitively illustrate the implications of the model, consider a course with a cumulative structure

and two learning stages. Suppose that students learn basic concepts in the first half of the course

and advanced concepts in the remaining half. That is, t ∈ {basic, adv}.

Parameterization of the Learning Technology and Cost Function. Let the following sim-

ple learning technologies represent the cumulative learning process:

Lbasic
i = α0 + α1e

basic
i + α2hi,

Ladv
i = β0 + β1e

adv
i + β2L

basic
i + β3e

adv
i × Lbasic

i .

A positive marginal benefit of effort at both learning stages implies that α1 > 0 and β1 > 0.

Since the advanced learning stage is cumulative, then clearly β2 > 0. Finally, assuming effort

exertion in the basic stage increases the productivity of advanced stage effort (i.e., there are dynamic

complementarities in effort), then β3 > 0.

The cost of effort is assumed to be linearly separable and represented by a quadratic cost

function:

c(eti) =
(eti)

2

2
for t ∈ {basic, adv}.
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The Students’ Optimal Effort Choice. The effective learning allocation acrosss the basic and

advanced stage to maximize learning net of effort costs is given by:

ebasic,∗i =
α1 [(1 + β2)(1− β3α1)(1 + β3α1) + β3(β1 + α0β3 + α1β3(1 + β2) + α2hi)]

(1− β3α1)(1 + β3α1)
,

eadv,∗i =
β1 + β3

[
α0 + α2hi + α2

1(1 + β2)
]

(1− β3α1)(1 + β3α1)
.

Note that if there are no dynamic learning complimentarities (i.e., β3 = 0), then the optimal effort

allocation simplifies to ebasic,∗i = α1(1 + β2), and eadv,∗i = β1. Additionally, suppose the course

structure was not cumulative, and completely distinct content was covered in both learning stages

(i.e., β2 = 0). Then effort allocation at each stage would be the corresponding marginal effort

benefit: ebasic,∗i = α1 and eadv,∗i = β1.

Simulating Optimal Effort Choice. Next, I will simulate an example effort allocation using

the stylized model. Assuming learning performance is measured on a scale from 0 to 100 and

effort is measured is hours of study time, I will consider the following reasonable parameter values:

α0 = 5, α1 = 3, α2 = 0.1, β0 = 0, β1 = 2, β2 = 0.8, β3 = 0.2, and hi = 70. Then the optimal effort

allocation is 15.7 hours in the basic stage, and 11.9 hours in the advanced stage. That is, the

student studies around 28 hours in this course, and slightly front-loads there effort allocation to

the basic stage.

Figure 4: Learning and Effort Allocaton
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Notes: The figure shows learning as a function of basic stage effort with total study time fixed. The vertical line
denotes optimal effort allocation to maximize learning.
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Figure 4 illustrates the fraction of achievable learning achieved as a function of basic stage effort

when 28 hours in total area available for studying. As learning is cumulative in this setup, it is

important to sufficiently exert effort in both learning periods, rather than focusing entirely on a

single learning period.

8 Estimating a Cumulative Education Production Function

In this section, I describe the estimation of a multi-stage education production function. The pa-

rameterization of the production function is informed by the actual structure of the introductory

programming course under consideration, noting that students learn across three distinct learning

stages: basic (e.g., loops), intermediate (e.g., nested loops), and advanced (e.g., algorithms). Fur-

ther, the estimation takes advantage of the unique data in this setting, the administrative data

allowing me to observe in a precise way both the total online study time spent on each learning

stage and the corresponding learning associated with each stage.

8.1 Specifying the Learning Technology

The technology maps effort inputs into contemporaneous learning for a given stage of the learn-

ing process. While the true technology is unknown, I impose minimal structure on the learning

technology to serve as a first-order approximation, using the following assumptions.

Assumption 1: The learning technology is linear and additive in inputs

First, I assume the learning technology is linear and additive in effort and prior knowledge.

The linear structure allows me to identify the marginal benefit of effort using instrumental variable

estimation. Consistent with the cumulative nature of programming, I also assume the learning

technology is cumulative.

Assumption 2: The learning technology is cumulative

Second, I assume the technology is cumulative, allowing learning beyond the basic stage to build

upon previously attained knowledge. For example, I allow learning in the intermediate stage to be

increasing in the knowledge accumulated in the basic stage. The cumulative technology reflects the

cumulative course structure as programming topics build on each other.

Assumption 3: The learning technology includes dynamic complementarities in effort

Third, I allow for the productivity of study time in the present stage to depend on the knowledge

accumulated in the previous stage. That is, dynamic interactions across effort inputs may be present

in the production function. Putting all three assumptions together, the learning technology in the
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basic stage is as follows:

Lbasic
ic = α0 + α1e

basic
ic + α2hic + δc + α3e

basic
ic × hic + ϵbasicic , (2)

where Lbasic
ic is the basic stage homework performance; ebasicic is the total online study time at the

basic learning stage; hic denotes baseline programming experience; δc is cohort fixed effects, and

ϵbasicic is a mean 0 stochastic error term. In equation 2, α1 > 0 implies a positive marginal benefit

of effort. The extent to which prior programming knowledge persists to the basic stage is captured

by α2 > 0 (Assumption 2). For α3 > 0, the marginal learning gains from basic effort exertion are

increasing in baseline knowledge (Assumption 3). The learning technology at the intermediate and

advanced learning stages are analogously defined as:

Lint
ic = β0 + β1e

int
ic + β2L

basic
ic + δc + β3e

int
ic × Lbasic

ic + ϵintic , (3)

Ladv
ic = λ0 + λ1e

adv
ic + λ2L

int
ic + δc + λ3e

adv
ic × Lint

ic + ϵadvic , (4)

where Lint
ic is a sufficient statistic for previously accumulated knowledge in equation 4, reflecting

the cumulative course structure. Given a positive marginal benefit of effort at each learning stage,

dynamic complementarities in effort across the stages implies β3 > 0 and λ3 > 0. As the midterm is

based on the basic stage material, the technology mapping basic stage effort to midterm performance

is defined analogously to equation 2. Similarly the technology that maps effort inputs to the

cumulative final exam performance is defined analogously to equation 4.

Other Parameterization of the Learning Technology. The main specification of the cumu-

lative learning process is represented by equations 2, 3, and 4. These are designed to be easily

interpretable and minimalistic representation of the cumulative STEM learning process. I now

discuss more complex representations of the cumulative learning process that may better fit the

data.22 For example, to allow for diminishing marginal returns to effort exertion, I consider the

following specification in the basic stage:

Lbasic
i = α0 + α1e

basic
i + α2(e

basic
i )2 + α3hi + α4e

basic
i × hi + ϵbasici , (5)

with α2 < 0 representing diminishing returns to effort in the basic stage. Adapting similar spec-

ifications to the intermediate and advanced stage will also allow for diminishing marginal returns

22I omit the cohort index for simplicity of the exposition.
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to effort, but with a more complex characterization of concavity due to the dynamic complemen-

tarities.

Instead of using the prior stage grade as a sufficient statistics for previous knowledge, cumulative

learning can be modelled entirely using historical effort inputs. For example, for learning in the

intermediate stage could be represented by:

Lint
i = β0 + β1e

int
i + β2e

basic
i + β3hi + β4e

basic
i × einti + β5e

int
i × hi + ϵinti . (6)

Now we have two separate dynamic interaction parameters, β4 and β5.

Instead of imposing linearity, a non-linear function as follows could be considered instead:

Lint
i = λ(θ1e

int
i + θ2e

basic
i + θ3hi)

γ + ϵinti , (7)

where λ > 0 governs the curvature, and γ < 0 represents the concavity of the learning production

function. Alternatively, the non-linear accumulation of knowledge can be represented by a CES

production function as follows:

Lint
i = λ(θ1(e

int
i )σ + θ2(L

basic
i )σ)

1
σ + ϵinti , (8)

where σ > 0 governs the elasticity of substitution between present effort and previous knowledge.

The CES production function can be linearized as a translog production function for estimation:

ln(Lint
i ) = ln(λ) + θ1ln(e

int
i ) + θ2ln(L

basic
i ) + θ11ln

2(einti )+

θ22ln
2(einti ) + θ22ln

2(Lbasic
i ) + θ12ln(e

int
i )ln(Lbasic

i ) + ϵi. (9)

When the coefficients associated with the quadratic term are 0, note that equation 3 and equation

9 have an analogous structure. That is, the education production function being estimated by

equations 2, 3, and 4 are sufficiently flexible to capture features of a CES production function.

Identification of the Learning Technology. Identifying the cumulative technology requires

exogenous variation in student effort, learning stage by learning stage. The marginal benefit param-

eters are identified using the exogenous variation in online learning participation within a student

across the learning stages induced by the randomly assigned homework reminders throughout the

course. Consistent with the cumulative course structure, the learning technology at each stage of
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the learning process is a function of present period total study time and previously accumulated

knowledge. I can instrument for both endogenous variables by using the number of randomly

assigned homework reminders a student receives at each learning stage. Therefore the repeated

homework reminders identify marginal benefit parameters.

8.2 Estimation

The marginal benefit of effort parameters are estimated using 2SLS by using the number of randomly

assigned reminders a student receives at each learning stage to construct the relevant instruments.

For the basic learning technology, the number of reminders received at the basic stage is used

to instrument for total basic stage study time. The intermediate learning technology has two

endogenous variables: the intermediate stage effort and basic stage knowledge. I use the number

of reminders received at the basic and intermediate stages separately as instruments to estimate

the intermediate learning technology. Following Angrist (2006), I estimate the learning technology

with two endogenous variable as follows:


Lint
ic = β0 + β1e

int
ic + β2L

basic
ic + δc + β3e

int
ic × Lbasic

ic + ϵintic ,

eintic = ρ0 + ρ1RemindersFreqBasicic + ρ2RemindersFreqIntic + δc + ϵintic

Lbasic
ic = γ0 + γ1RemindersFreqBasicic + γ2RemindersFreqIntic + δc + ϵintic

whereRemindersFreqBasicic is the number of reminders received in the basic stage, andRemindersFreqIntic

is the number of reminders received in the intermediate stage. If reminders are effective in induc-

ing effort exertion at each learning stage, we expect ρ2 > 0 and γ1 > 0. The advanced learning

technology is estimated analogously.

8.3 Discussion of Parameter Estimates

The marginal benefit parameter estimates are shown in Table 6. The estimates show a positive

marginal benefit of effort at each learning stage. For example, at the basic stage, an additional hour

spent studying increases students basic stage homework grade by around 0.14 SD for the average

student. The estimates also show that exerting effort on the low-stakes homework assessments

results in higher midterm and final exam performance. For example, in the advanced learning

stage, I find an additional hour of online study time increases final exam grades by 0.11 SD, and

this marginal benefit increases by 0.07 SD for every 1 SD increase in intermediate stage homework

performance. The evidence is consistent with the online homework assessments being a primary
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source of learning in this course.

The estimates also indicate evidence of dynamic interactions in effort inputs across the learning

stages. Complementarities in present effort exertion and previous knowledge are present in both the

intermediate and advanced learning stages as β3 and λ3 are both statistically significant from 0. For

example, the marginal benefit of studying for an hour in the advanced learning stage is increasing

by 0.08 SD for each every 1 SD increase in intermediate homework performance. The results

are consistent with most students having no prior programming experience, and also reflect the

cumulative learning structure of programming. That is, students are accumulating programming

knowledge over time through their effort exertion across varying programming topics that naturally

build on each other.

Overall, the results suggest that students learning effectively should appropriately front-load

their effort allocation, thereby becoming proficient in foundational skills that serve as the building

blocks for rest of the course. Figure 5 illustrates the proportion of total effort, on average, allocated

over the three learning stages and the corresponding grading weight.

Figure 5: Average Effort Allocation and Grading Scheme Across Learning Periods
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Notes: The figure presents the mean proportion of total effort allocated across the basic, intermediate, and advanced
learning stages. The corresponding grading weights are also presented.

Figure 5 shows that contrary to the effective learning strategy implied by the results, the average

student’s efforts are loaded towards the later learning stages. Such an effort allocation is consistent

with the course grading scheme which increases as the course progress, as is typical in most courses.

In other research, I use survey data further to characterize students who are at risk of falling behind
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early on, and those that study effectively as implied by the learning technology. Additionally I also

explores the role of grading scheme design in encouraging students to study effectively.

9 Conclusion

The share of students pursuing education in STEM has been increasing rapidly over the past

decade. Although STEM graduates are a vital input to any modern society, learning advanced

skills in STEM can be challenging given its cumulative nature. Identifying the cumulative learning

process is beneficial for understanding effective learning strategies and approaches to course design.

In light of the benefits, this paper presented an approach to credibly estimating the learning process

while circumventing the typical issues of measurement error and endogenity of effort inputs.

The empirical approach I developed involves several components. I employed rich administrative

data from a large pre-existing foundational online STEM course that has a cumulative structure. I

then conducted randomized interventions that were successful in nudging students to spend more

time learning and complete more online assignments. The administrative dataset, including precise

measures of student study time allocation, together with the field experiment were then used to es-

timate a cumulative education production function. Exogenous experimental variation arising from

the field experiment served to credibly identify the marginal benefit each stage of the cumulative

learning process built into the STEM course.

The findings presented help to inform the design of large foundational courses that apply to both

online and traditional in-person setups. First, completing low-stakes online assignments throughout

the course is essential for student learning: spending an extra hour on online assignments increases

final exam grades by 0.09 SD (noting that online homework is the key means of learning in the

course). Second, I find evidence of strong dynamic learning complementarities in the cumulative

education production function. That is, the productivity of effort learning advanced skills is increas-

ing in prior knowledge. Contrary to this evidence, however, I find that students effort allocation

increases as the course progresses. Then, given a cumulative course structure, an instructor can

consider setting the assignment grading weights so that students exert sufficient effort early on

learning the fundamentals. In a follow-up paper, I investigate the design of grading schemes that

best encourage students to allocate effort to learn effectively in courses with a cumulative structure

and heterogeneous students.
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Tables

Table 1: Student Level Summary Statistics

Variable Mean Std. Dev. Min. Max. N

Panel A: Demographics

I(Female) 0.491 0.499 0 1 3686
I(First year of university) 0.618 0.485 0 1 3686
I(Domestic student) 0.531 0.499 0 1 3686
I(Speaks English at home) 0.286 0.452 0 1 3686
I(First generation university) 0.173 0.378 0 1 3686
I(Mother at least college graduate) 0.668 0.459 0 1 3686
I(Father at least college graduate) 0.700 0.458 0 1 3686

Panel B: Characteristics

I(Has some prior programming experience) 0.134 0.341 0 1 3686
I(Course required for major) 0.736 0.441 0 1 3686
I(Pursuing STEM major) 0.717 0.448 0 1 3686

Panel C: Behavioural Characteristics

I(Student is attentive) 0.762 0.426 0 1 3686

Panel D: Online Homework Participation

I(Started weekly homework) 0.843 0.367 0 1 3686
I(Completed weekly homework) 0.671 0.471 0 1 3686
Weekly unique minutes of videos watched 24.52 9.211 0 38.35 3686
Weekly minutes spent doing problems 122.49 63.107 0 434.13 3686

Panel E: Discussion Board Participation

I(Registered for course discussion board) 0.791 0.407 0 1 3686
No. of total contributions 3.57 14.087 0 237 2911
No. of unique posts viewed 121.88 149.28 0 1022 2911
Weekly minutes spent on discussion board 28.61 14.51 0 187.66 2911

Notes: Table presents descriptive statistics related to student demographic and characteristics, discussion board
participation and online homework activity. Statistics shown in Panel A and B are formulated using self-reported
student responses on the baseline survey (see Appendix C.1). Panel C uses survey data to characterize students
as attentive (see Appendix C.2). Panel D statistics are formulated from the administrative data of the online
homework platform (C.3). Finally, the statistics shown in Panel E are computed using data gathered from the
discussion board.
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Table 2: Student Attrition and Treatment Allocation

(1) (2)
I(Dropped course) I(Dropped course)

No. of reminder messages received 0.0116 -0.0061
(0.0898) (0.0192)

Controls No Yes
No. of Students 4091 4091
R-squared 0.0015 0.13

Notes: Table shows differential attrition rate by intensity of the treatment condition. Controls include pre-treatment
student demographics and characteristics included in Panels A and B of Table 1, and cohort fixed effects. Significance
levels are represented by ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Table 3: Homework Reminders and Online Homework Participation

(1) (2) (3) (4)
Homework Completiona Homework Completion Study Timeb Study Time

No. of reminders received 0.184∗∗∗ 0.187∗∗∗ 23.83∗∗∗ 22.71∗∗∗

(0.0126) (0.0128) (2.1663) (2.0783)

Controls No Yes No Yes
F-stat for treatment 213.15 217.61 121.31 120.24
Adjusted R-square 0.125 0.358 0.133 0.326
No. of Students 3686 3686 3686 3686

Notes: aHomework completion is defined as the student attempting all problems with a positive score. bTotal minutes
spent watching videos and working on homework problems. Students can receive at most 10 reminder messages. Controls
include pre-treatment student demographic and characteristics included in Panels A and B of Table 1, and cohort fixed
effects. Significance levels are represented by ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Table 4: Student Online Learning Participation and Final Exam Grade (2SLS)

(1) (2) (3) (4)
Exam Performancea Exam Performance Exam Performance Exam Performance

Homework Completionb 0.181∗∗∗ 0.176∗∗∗

(0.0540) (0.0516)
Total Study Time (Hours)c 0.084∗∗∗ 0.091∗∗∗

(0.0312) (0.0322)

Controls No Yes No Yes
Adjusted R-square 0.092 0.262 0.083 0.241
No. of Students 3686 3686 3686 3686

Notes: aStandardized final exam grade. bHomework completion is defined as the student attempting all problems with a positive score.
cTime spent watching videos and working on homework problems. Total number of reminders received is used as an instrument for
homework participation. Controls include pre-treatment student demographic and characteristics included in Panels A and B of Table
1, and cohort fixed effects. Significance levels are represented by ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 5: Efficacy of Reminders by Study Group Involvement

(1) (2)
Homework Completedb Homework Completed

I(Study group) × No. of reminders 0.061 0.043
(0.0537) (0.0317)

Controls No Yes
Adjusted R-square 0.142 0.371
No. of Students 3686 3686

Notes: Indicator for whether a student is in a study group and the number of reminders received are also included in
the estimation. Student demographics and other characteristics include variables present in Panel A and B in Table 1
respectively. Only students who had not registered for the discussion board prior to the baseline survey were eligible
for sign-up activity. Significance levels are represented by ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 6: Benefit of Effort Parameter Estimates (2SLS)

Parameter Estimate (SE)

Panel A: Basic Learning Stage Performance

α̂1 (basic minutes study)
0.00241∗∗∗

(0.00061)

α̂2 (baseline knowledge)
0.114∗∗

(0.0553)

α̂3 (basic effort × baseline knowledge)
0.00126∗

(0.00072)

Panel B: Midterm Performance

θ̂1 (basic minutes study)
0.00221∗∗∗

(0.00059)

θ̂2 (baseline knowledge)
0.093∗

(0.0492)

θ̂3 (basic effort × baseline knowledge)
0.00214
(0.00358)

Panel C: Intermediate Learning Stage Performance

β̂1 (intermediate minutes study)
0.00212∗∗∗

(0.00052)

β̂2 (basic knowledge)
0.166∗∗∗

(0.0442)

β̂3 (int. effort × basic knowledge)
0.00111∗∗

(0.00054)

Panel D: Advanced Learning Stage Performance

λ̂1 (intermediate minutes study)
0.00178∗∗

(0.00087)

λ̂2 (intermediate knowledge)
0.183∗∗∗

(0.0441)

λ̂3 (adv. effort × int. knowledge)
0.00137∗∗

(0.00069)

Panel E: Final Exam Performance

π̂1 (adv. minutes study)
0.00189∗∗

(0.00095)

π̂2 (intermediate knowledge)
0.155∗∗∗

(0.0418)

π̂3 (adv. effort × int. knowledge)
0.00123∗∗

(0.00061)

No. of students 3686

Notes: All assessment performances are standardized. Baseline knowledge is a
standardized measure that aggregates prior programming knowledge and cGPA.
The number of reminders received at each stage are the instrumental variables
for study time and prior stage knowledge. Significance levels are represented by
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Figures

Figure 6: Timeline of Data Collection

Fall Winter Summer Fall Winter
2019 2020 2020 2020 2021

COVID-19
Campus Closure

No surveys or nudges

Apr 21Sep 19

due to COVID-19
adjustments

Jan 20 Apr 20 Sep 20 Jan 21

Surveys
Prototyping Nudges

Interviews

Surveys
Nudges

Interviews

Surveys
Nudges

Surveys
Nudges

Primary data
Pilot data
Aggregate data only

Aug 21

Summer
2021

Surveys
Nudges

Notes: The figure illustrates the timeline of the data collection. The primary data collection is gathered from the
Winter 2020, Fall 2020, Winter 2021, and Summer 2021 cohorts. Pilot data is gathered from the Fall 2019 cohort
and involved conducting interviews with students and instructors, surveying students, and prototyping interventions.
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Figure 7: Distribution of Homework Reminders Received
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Notes: The figure shows the distribution of reminders received by students. For each of the 10 graded homework
assessments, half of the students are randomly selected to receive a reminder. Then each student is eligible to receive
between 0 and 10 homework reminders in total.

Figure 8: Student Demographic and Characteristics Balance Check for Homework Reminders

Female

First year

Domestic student

English at home

First generation

Mother education

Father education

Programming exp.

Course major requirement

STEM major

-.2 -.15 -.1 -.05 0 .05 .1 .15 .2
Standardized Marginal Effect of Extra Reminder

Notes: The estimates displayed are computed by regressing each standardized variable presented on the vertical axis
on the number of reminders received. The error bars represent 95% confidence intervals.
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Figure 9: Homework Completed and Reminder Messages
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Notes: The figure shows the average number of online homework assessments completed by the number of reminders
received. There are 10 graded homework assessments. The error bars represent the 95% confidence intervals.

Figure 10: Reminder Messages Attentiveness Mechanism
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Notes: The figure presents a binned scatter plot showing the relationship between finding the reminders helpful for
keeping on track with homework and student attentiveness. Whether a student finds reminders to be useful is inferred
from the survey data. The student attentiveness index is constructed using a series of survey questions (see Appendix
??).
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A Appendix: Summary of Related Literature

A.1 Related Education Production Function Literature

Table 7: Research Exploring Education Production and Dynamic Complementarities

Title Authors (Date, Pub-
lisher)

Data Research Design Main Results

The Production of
Cognitive Achievement
in Children: Home,
School, and Racial Test
Score Gaps

Todd and Wolpin (2007,
JHC).

N = 7700 individuals
who are aged 14-21 in
the NLSY79-CS.

Estimate cumulative
production function
using the mothers abil-
ity, child ability, and
history of family and
school inputs.

Lagged home inputs are
significant predictors of
present achievement.
Overall, estimates
suggest the learning
process is cumulative.

The Technology of Skill
Formation

Cunha and Heckman
(2007, AER).

NA (Conceptual Frame-
work)

Develop model of hu-
man capital accumula-
tion which features dy-
namic complementari-
ties in parental inputs.

Model suggests it is im-
portant to invest during
early childhood stage
(e.g. pre-school), more
so than later stages (e.g.
tuition reduction pro-
grams).

The Production of
Human Capital: En-
dowments, Investments,
and Fertility

Aizer and Cunha (2012,
NBER WP).

N = 30,039 children
from 1963 - 1970 whose
mothers were involved
in the National Collabo-
rative Perinatal Project
(NCPP).

Use introduction of
Head Start in 1996
as instrument for
investment.

Consistent with dy-
namic complementari-
ties, authors find larger
IQ gains from preschool
for children with the
highest stock of early
human capital.

School Accountability
and the Dynamics
of Human Capital
Formation

Gilraine (2018, Working
Paper).

N = 3,310 school-year
observations from pub-
lic schools in North Car-
olina.

Leverages year-to-year
variation in school
accountability resulting
from whether there are
at least forty students
belonging to a specific
demographic group.

Author finds a 0.18σ
increase in test scores
for students who are in
schools that were sub-
ject to school account-
ability in two consecu-
tive periods relative to
those in schools subject
to accountability only in
the previous period.

Does EdTech Substitute
for Traditional Learn-
ing? Experimental Es-
timates of Educational
Production Function

Bettinger et al. (2020,
NBER WP).

N = 6253 grade 3 stu-
dents in Russia. Teach-
ers had access to com-
puter assisted learning
software to help stu-
dents learn math and
language by solving as-
signed problems.

Students randomized to
1) no computer assisted
learning (control), 2)
45-minute computer
assisted learning, 3)
90-minute computer
assisted learning. Time
spent learning using
the software was a
direct substitute for
traditional learning.

Education production
function is concave
in computer assisted
learning. Estimates
suggest a hybrid of
computer assisted
learning and traditional
learning is optimal.
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A.2 Related Student Effort Literature

Table 8: Research on Exploring Student Effort

Title Authors (Date, Pub-
lisher)

Data Research Design Main Results

The Effect of Time
Spent Online on Stu-
dent Achievement in
Online Economics and
Finance Courses

Calafiore and Damianov
(2011, JEE).

N = 438 students
enrolled in online Eco-
nomics and Finance
courses during the
Spring and Fall 2008 in
large public university
in south Texas.

Multiple and logistic re-
gression analysis using
prior cGPA, age, gen-
der, and major as a con-
trol variables. Use ses-
sions logs from Black-
board to track time us-
age.

Even after conditioning
on prior cGPA, time
spent on course activi-
ties is a significant pre-
dictor of performance
and earning a better let-
ter grade in the course.

“Making it count”: in-
centives, student effort
and performance

Chevalier, Dolton, and
Luhrmann (2018, JRS).

N = 424 introductory
economic students
across two cohorts
enrolled at a large col-
lege of the University
of London. Students
are followed across 20
weeks.

Variation in incentives
across weeks of either
1) additional study
material conditional on
quiz participation, 2) 20
GBP book voucher for
best quiz performance,
or 3) quiz grade counts
towards course grade.

Additional study ma-
terial for participation
and book vouchers are
ineffective in increasing
quiz participation.
Grade incentives signif-
icantly increases quiz
participation and also
results in improved
exam grades.

Financial Incentives
and Educational In-
vestments: The Impact
of Performance-Based
Scholarships on Student
Time Use

Lisa Barrow and Ce-
cilia Elena Rouse (2018,
EFP).

N = 5160 high school se-
niors in California.

Students randomized to
performance based (ob-
tain a C average) post-
secondary scholarships
of $1000− $4000.

Financial incentives
induce more time us-
age on educational
activities and allocate
less time on work and
leisure.

What sets college
thrivers and divers
apart? A contrast in
study habits, attitudes,
and mental health

Beattie et al. (2019,
EL)

N = 3849 students en-
rolled in introductory
economics in 2017 at
University of Toronto.

Compare student char-
acteristics and habits
across thrivers and
divers.

Thrivers study around
15 hours per week,
seven more hours per
week than divers (8
hours per week).

When Study and Nudge
Don’t Go As Planned:
Unsuccessful Attempts
to Help College Stu-
dents

Oreopoulos et al. (2018,
NBER WP).

N = 9503 students from
University of Toronto
(N = 3438) and West-
ern Governors Univer-
sity (N= 6065) in the
2017-18 academic year.

Students randomly as-
signed to 1) personal-
ity test (control) or 2)
planning module (build
weekly calendar + as-
signed coach).

Despite marginal in-
crease in study time
for those in treatment
group, null effects
on course grades and
retention.

Using Goals to Motivate
College Students: The-
ory and Evidence from
Field Experiments

Clark et al. (2020, Re-
Stat)

N = 2004 students for
task-based experiment,
and N = 1967 for per-
formance based experi-
ment. First year intro-
ductory course.

Students randomly
assigned to control
or goals treatment.
Fall 2013 cohort for
performance-based
goals, and Fall 2014 for
task-based goals.

Task-based goals in-
creased task completion
and resulted in signifi-
cant performance gains.
Although, performance-
based goals are not as
effective.
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B Appendix: Institutional Details

B.1 Course Outline

The course is taught over 12 weeks. Learning the principles of programming can be broken down

into the following three stages: 1) basic concepts (e.g., variables and loops), 2) intermediate concepts

(e.g., nested loops and parallel lists), and 3) advanced higher order concepts (e.g., algorithms and

object oriented programming). That is, the course have a cumulative structure where topics build

on each other. The following table includes the syllabus for the foundation programming course.

Week Topics Coverage

1 Numerical operations, variable assignment, and common coding errors
2 Defining functions and string variables
3 Conditional statements (if, elif, and else) and boolean variables
4 Loops (for and while)
5 Properties of lists (e.g., aliasing and mutability)
6 Nested lists and nested loops
7 Tuples, dictionary, and parallel lists
8 Palindromes classification algorithm and more about lists, tuples, and dictionaries
9 Good programming practices for testing and debugging code (e.g., unit tests)
10 Search and sorting algorithms (e.g., binary search and bubble sort)
11 Writing classes and methods
12 More object oriented programming (classes and methods)

The course employs two online learning platforms: an online homework environment and an

online peer discussion board.

B.2 Online Homework Environment

Each week students receive an online homework module where students watch videos and then

subsequently solve homework problems. Students login to the platform, and are given an outline

for the videos they should watch and are presented with the follow-up coding problems. The online

learning platform hosts a total of 133 videos (7.1 hours) and 401 follow-up homework problems. All

homework problems are graded through an automatic artificial intelligent system. The following

table presents summary statistics for the weekly content available on the platform.
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Variable Mean SD

No. of videos assigned per week 11.1 4.4
Minutes of video lectures assigned per week 35.4 14.402
No. of questions assigned per week 33.3 13.614
Proportion of coding questions per week 0.22 0.121

No. of weeks 12

Students provided an outline for how to learn a topic:

Figure 1: Outline for Learning Numerical Operations

Students begin the course by watching a video about numerical operations in Python:

Figure 2: Video on Numerical Operations
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The following figure shows an example of a follow-up coding problem:

Figure 3: Sample Coding Exercise

B.3 Online Peer Discussion Board

Students can use the online peer discussion board to get help with course material through asking

questions. The questions are answered by peers, and answers can be validated by TAs or instructors.

Students can also comment on either questions and answers. Comments can be used to further

clarify the question, or give ideas on how to start solving the problems. The following table shows

an example of student interactions on the discussion board.

Table 9: Example of Student Peer Interaction on Discussion Board

Interaction Type Response

Question How do we write a new line in a file using python?

Answer

Similar to how you would create a new line in a print function:

file = open(“somefile.txt”, “w”)
file.write(‘\n’)
file.close()

I hope that helps.

Comment
The code in the answer works, but note that opening a file in write mode
will delete the contents of the file. Use append mode if you want to add to the file.
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C Appendix: Data

C.1 Measuring Student Demographics and Characteristics

Student demographics and other characteristics shown in Panels A and B of Table 1 are used as pre-

treatment controls for most regression specifications. Several of the student controls are constructed

using the following questions on the baseline survey. Aside from the options listed below, students

could also opt-out from answering the question by selection “Prefer not to answer”.

• What is your gender identification?

– Male; Female; Other

• Are you the first one in your immediate family to attend university?

– Yes; No

• What is your mother’s highest level of education?

– Did not finish high school; high school graduate; some college; college graduate; graduate

degree (e.g., masters or doctorate)

• What is your father’s highest level of education?

– Did not finish high school; high school graduate; some college; college graduate; graduate

degree (e.g., masters or doctorate)

• Is English your native/first language?

– Yes; No

• What language do you speak at home? (open response)

• How would you describe your prior experience with programming?

– I have never programmed before; I have written a few lines of code; I have written basic

programs before; I have extensive experience programming

• Which of these is closest to your (intended) program of study?

– Computer Science; Commerce; Humanities; Life Sciences; Physical and Mathematical

Sciences; Social Sciences; Other
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Table 10: Survey Components for Attentiveness

Survey question (7-point scale) Relationship with attentiveness

I tend to read all the instructor announcements for this course each week Increasing
I have read the course syllabus in detail Increasing

I know how to access office hours Increasing
I know when office hours are held Increasing

I tend to forget about my assignment deadlines Decreasing

C.2 Measuring attentiveness

The baseline survey elicits a student’s attentiveness through a series of questions. Responses to

the relevant questions are aggregated so that they are increasing in the attribute of interest. The

tables below include the 7-point Likert scale survey questions used to measure attentiveness.

Students are classified as attentive if they responded with at least 5 to the first three questions

in Table 10, and at most 3 to the last question.

C.3 Measuring Study Time

I use the time-stamped online interactions to construct a measure of total study time for each

learning stage. Students primarily spend their time on the online homework platform. Additionally,

students participate in the online peer discussion board by writing and reading posts.

C.3.1 Study time on online homework

The administrative data includes time-stamps for when students log-in, log-out, click to play/pause

videos, submit a solution to a problem, and various other interactions with the platform. I develop

a simple algorithm that uses the time-stamped data to measure the number of minutes of videos

watched (v) and minutes spent doing homework problems (h). The algorithm leverages the fact

that students tend to study in around 30-minute blocks throughout the week. The blocks of study

time are identified to the nearest 5-minute of inactivity and aggregated together. Then, for each

learning stage t, the time spent on the online homework is:

eHi,t = vi,t + hi,t.

C.3.2 Study time on peer discussion board

Although the administrative data includes the number of posts written (w) and unique posts read

(r), the time spent on these activities is not included. To fill this gap, the final survey asks students
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how many minutes on average they spend writing (mw) and reading a post (mr). The survey

questions eliciting time costs to discussion board participation are as follows:

• Roughly how much time (in minutes) do you believe it takes you to write an average quality

discussion board post (i.e. make new question or answer peer question)?

– Minutes it takes to write a question [numeric response]

– Minutes it takes to write a answer [numeric response]

• In a hypothetical scenario, suppose you were given 10 minutes to browse the discussion board

and read posts (question or answers). How many posts do you think you could read in detail

in that time period?

– Number of questions carefully read in 10 minutes [numeric response]

– Number of answers carefully read in 10 minutes [numeric response]

Then, for each learning stage t, the time spent on the discussion board is:

eDi,t = mw
i wi,t +mw

i ri,t.

C.3.3 Total study time

Time spent across the online homework and discussion boards aggregated at each learning stage to

construct study time:

ei,t = eHi,t + eDi,t

C.4 Survey questions eliciting student peer interactions

The surveys include the following questions to measure the extent to which students interact with

other peers in the course.

• Are you in a study group for [CourseCode]?

– I am in a study group officially recognized by [institution name]

– I am in another study group with students from this course

– No

• Around how many students in the course do you study with per week? [Numerical Entry]
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• Around how many hours per week do you study with other students in this course? [Numerical

Entry]

• I discussed the contents of the homework reminder messages with other students in the course

[Likert Scale]
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D Appendix: Nudges

The reminder messages are designed using various behavioural insights such as implementation

intentions, utility value, and self-reflection. Kizilcec et al. (2020), Harackiewicz and Priniski (2018)

and Damgaard and Nielsen (2018) provides excellent reviews on the behavioural nudging literature

in education.

D.1 Homework reminder messages

The homework reminders are sent through the learning management system. Students receive the

reminder in their personal university email inbox and a notification of the message on the learning

management system. The template for the homework reminder is as follows.

Hi [Student Name],

The homework is due by [Deadline]. Please take a moment to think about the following prompts:

When will you next work on this week’s homework? Can you set aside time on your schedule to

progress on the homework?

Some students find it valuable to just open up the online homework system and spend a minute on

a problem. Here is the link to the homework: [Link to Homework]

[Course Code] Learning Support Team
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