Tutorial: Two Stage Least Squares for IV Feedback Form: https://tiny.cc/hammadfeedback

Hammad Shaikh

• Consider Z_1 and Z_2 as valid IVs for X i) $\left(ov\left(\frac{2}{j}\right) = 0, \text{ ii}\right) \left(ov\left(\frac{2}{j}\right) = 0, \text{ j} = 1/2$

• Idea: Combine Z_1 and Z_2 into one valid IV for X

$$\widetilde{\mathcal{Z}} = W_1 \mathcal{Z}_1 + W_2 \mathcal{Z}_2$$

$$\bigcup_{i=1}^{n} \left\{ (ov(\widetilde{\mathcal{Z}}_1 \mathcal{E}) = 0 \\ (ov(\widetilde{\mathcal{Z}}_1 \mathbf{X}) \neq 0 \right\}$$

Two Stage Least Squares with Covariates X = exog. Catrols • $Y = \beta_0 + \beta_1 X + \beta_2 X^* + \epsilon$ Gor(X, E) ≠0 = ols Gx ^x L E is biased for Ba • Let Z_1 and Z_2 be valid IVs for X after controlling for X^* Exog. ZIZ IE XX • What are the first and second stages? $(1) X = \alpha_0 + \alpha_1 Z_1 + \alpha_2 Z_2 + \alpha_3 X_1 + U_1$ $b \quad \hat{\chi} = \hat{\alpha}_0 + \hat{\alpha}_1 z_1 + \hat{\alpha}_2 z_2 + \hat{\alpha}_3 X^*$ $(2) Y = \beta_0 + \beta_1 \hat{X} + \beta_2 X^* + \xi \rightarrow \hat{\beta}_1^{2515}$ 5/7

• Why may $dist_i$ be a valid IV for $print_i$? (1) $Gv(Z, X) \neq 0$ (2) Gv(Z, E) = 0rot directly Practice Problem Continued (Dec, 2016 Exam) X*= [Inpup, port] • $popgrowth_i = \beta_0 + \beta_1 lnpop_i + \beta_2 print_i + \beta_3 port_i + U_i$ 2 • *dist_i* is distance between city *i* and Mainz, Germany (where printing presses were invented) (i) $X = \alpha_0 + \alpha_1 \overline{z} + \alpha_2 \ln p \cdot p + \alpha_3 p \cdot r + \xi$ $\longrightarrow \hat{X} = \hat{\alpha}_0 + \hat{\alpha}_1 \overline{z} + \hat{\alpha}_2 \ln p \cdot p + \hat{\alpha}_3 p \cdot r + \xi$ • How to apply 2SLS with *dist_i* as a valid IV for *print_i*? (2) $Y = \beta_0 + \beta_1 \ln \rho \rho \rho + \beta_2 \chi + \beta_3 \rho r + U$ 4 B.2565 7/7