Tutorial: Hypothesis Testing

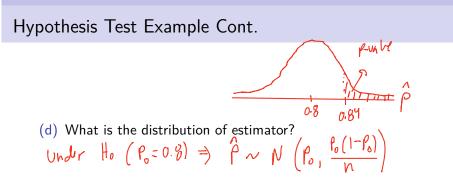
Hammad Shaikh

October 20, 2019

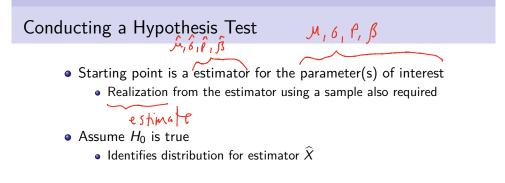
Hypothesis Testing

- A hypothesis is a statement about population parameters
 Sample statistics don't belong in a hypothesis
- Null hypothesis: statement relating to the status quo
 - Example, H_0 : Teacher did not cheat

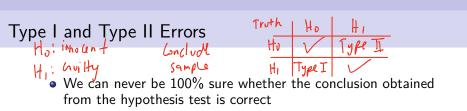
 \underline{Fx} . $H_{\delta}: P_{\text{tails}} = \frac{1}{2} (fair win)$


- Alternative hypothesis: statement taking the opposite stance than the null hypothesis that the researcher is interested in
 - Example, H_1 : Teacher cheated

Hypothesis Test Example


 U of T has around 6000 students that enrol in ECO100. Suppose the dean claims that more than 80% of them complete the course. The dean asks you to test this claim. You have a survey of 500 students who initially enrolled in ECO100, 420 students report completing the course

(a) What is the population parameter of interest? $\rho = \frac{\# G_{MP} U + E G_{100}}{6000} (f_{WM} \rho - \rho \cdot G_{MP} U + c E G_{100})$ (b) How to estimate population parameter? $\rho = \frac{\# G_{MP} U + E G_{100}}{S_{00}} (Estimator), \quad \tilde{\rho} = \frac{420}{S_{00}} = 0.84 (Estimate)$ (c) How to set up hypothesis test (H₀ and H₁)? $f_{0} \cdot \rho \leq 0.8 (P = 0.8)$ $H_{1} \cdot \rho > 0.8$


3/12

(e) What is p-value and conclusion? $p_value = Pr(\hat{p}, \hat{p}) = 0.009 < \alpha = 0.05$ $\alpha = 0.05$ =) rej. H_0

- Compute the probability of obtaining a value for \widehat{X} at least as extreme as that obtained from sample
 - This is known as the p-value
- Define significance level $\alpha \in \{0.01, 0.05, 0.1\}$
 - Fail to reject H_0 if p-value $> \alpha$
 - Reject H_0 if p-value $< \alpha$

- The conclusion may be incorrect (mistakes are possible)
- Type I Error: Rejecting a true null hypothesis ("false positive")
 - Hypothesis test says a honest teacher cheated
- Significance level $\alpha = \Pr(\text{Type I Error})$
- Type II Error: Failing to reject a false null ("false negative")
 Hypothesis test says a cheating teacher did not cheat

Ltype I => PType I (non-linear)

Simple Linear Regression and Hypothesis Testing

• Simple linear regression: $TestScore_d = \beta_0 + \beta_1 STR_d + \epsilon_d$

- β_0 (intercept) and β_1 (slope) are unknown parameters
- Use sample $(STR_d, TestScore_d)_{d=1}^n$ to make inference about the simple linear regression parameters

Ly ĵ,

• Question: How much can we trust the primary estimate \hat{b}_1 ?

• Null Hypothesis: Class size has no effects on achievement $\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \beta_{j} = 0$

SLR and Hypothesis Testing Cont.

• Under
$$H_0: eta_1 = 0$$
 we have $\widehat{eta}_1 \sim N(0, rac{\sigma_{\epsilon}^2}{\sum_{i=1}^n (X_i - \bar{X})^2})$

• Since ϵ unknown, σ_{ϵ}^2 is also unknown. The solution is to replace it with s_{e}^2 , the sample variance of the residuals

 $\beta_1 = \frac{S_{xy}}{S_1}$

• If $H_1: \beta_1 \neq 0$ we compute p-value $= 2 * Pr(\hat{\beta}_1 > \hat{b}_1)$ • \hat{b}_1 is very significant if p-value < 0.01, significant if p-value < 0.05, and marginally significant if p-value < 0.1• Computing p-value involves $SE(\widehat{b_1}) = \sqrt{Var(\widehat{\beta_1})}$ • Typically (not always) if $|\frac{\widehat{b_1}}{SE(\widehat{b_1})}|>2$ then \widehat{b}_1 is significant

Confidence Interval and Hypothesis Testing Margin Error $M = pop^{n} man = \sum_{\substack{n=1 \\ n \neq n \neq n}} \begin{cases} point estimator: X \\ estimator: X + t_{n \neq 1}n-1 \\ \hline{n \neq n \neq n} \end{cases}$ • Confidence intervals: Estimate \pm Margin of Error • Interval estimator for a population parameter • Probability interval estimator includes parameter is 1 - α $\underbrace{\mathsf{E}^{X}}_{\mathsf{P}} \operatorname{Pr}\left(\mathcal{M} \in \left[\overline{X} - \operatorname{t}_{\mathsf{a}_{12}} \operatorname{I}_{\mathsf{n}^{-1}} \frac{\mathsf{s}_{\mathsf{Y}}}{\operatorname{I}_{\mathsf{n}^{-1}}}\right] \overline{X} + \operatorname{t}_{\mathsf{d}_{12}} \operatorname{I}_{\mathsf{n}^{-1}}\right] = I - \infty$ • Fail to reject H_0 is CI estimate includes true parameter Ho: M=O=) OE (In =) FTR Ho Under Ho

• Reject H_0 is CI does not cover true parameter $H_0: M = 0 \rightarrow 0 \notin (I_M \Rightarrow) R_j H_D$ Under Ho

Hypothesis Testing Example with Multiple Regression

vage – D0 + Die	due i Dzinie	Juneaue 1	Dolatileuu	ie i epsj		
Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
22.607	2.416	9.36	0.000	17.869	27.345	**
5.237	2.335	2.24	0.025	0.659	9.816	**
3.636	1.959	1.86	0.064	-0.205	7.476	*
189.539	29.886	6.34	0.000	130.931	248.146	***
	589.814	SD dependent var			265.115	
	0.081	Number of obs			2220.000	
	65.053	Prob > F			0.000	
	<u>Coef.</u> 22.607 5.237 3.636	Coef. St.Err. 22.607 2.416 5.237 2.335 3.636 1.959 189.539 29.886 589.814 0.081	Coef. St.Err. t-value 22.607 2.416 9.36 5.237 2.335 2.24 3.636 1.959 1.86 189.539 29.886 6.34 589.814 SD depe: 0.081	Coef. St.Err. t-value p-value 22.607 2.416 9.36 0.000 5.237 2.335 2.24 0.025 3.636 1.959 1.86 0.064 189.539 29.886 6.34 0.000 589.814 SD dependent var 0.081 Number of obs	Coef. St.Err. t-value p-value [95% Conf 22.607 2.416 9.36 0.000 17.869 5.237 2.335 2.24 0.025 0.659 3.636 1.959 1.86 0.064 -0.205 189.539 29.886 6.34 0.000 130.931 589.814 SD dependent var 0.081 Number of obs	22.607 2.416 9.36 0.000 17.869 27.345 5.237 2.335 2.24 0.025 0.659 9.816 3.636 1.959 1.86 0.064 -0.205 7.476 189.539 29.886 6.34 0.000 130.931 248.146 589.814 SD dependent var 265.115 0.081 Number of obs 2220.000

Linear regression (wage = B0 + B1educ + B2motheduc + B3fatheduc + eps)

*** p<0.01, ** p<0.05, * p<0.1

• Is β_1 statistically significant at the 5% level? $H_0: \beta_1 = 0$, $\beta_1 = 72.6$, $\beta \approx 0 < 0.05$ \Rightarrow rej. Ho $0 \notin C_T$ • Is β_3 statistically significant at the 5% level? $H_0: \beta_3 = 0$, $\beta_3 = 3.6$, $\beta = 0.064 > 0.05 \Rightarrow$ FTK Ho

Testing for Overall Significance of Regression Model

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$$

• $H_0 : \beta_0 = \beta_1 = \ldots = \beta_k = 0$
 $H_1 : \beta_j \neq 0$ for $j \in \{1, \dots, k\}$
 $R = \# \circ f$ (provides)
• $F_{stat} = \frac{R^2/k}{(1-R^2)/(n-k-1)} \sim F(k, n-k-1)$
• Is the regression on the previous slide significant at 5% level?

Testing Significance For a Subset of Slope Parameters - Rur • Unrestricted : $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$ • $H_0: \beta_1 = \ldots = \beta_q = 0$ for q < kH: B; = 0 for je [0,1,2..., ?] MRr Rr • Restricted : $Y = \beta_{q+1}X_1 + \beta_2X_2 + \ldots + \beta_kX_k$ $\xi^{\dagger} = \xi^{\dagger} \xi^{\dagger} \xi^{\dagger}$ g=# of nstrictions • $F_{stat} = \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k - 1)} \sim F(q, n - k - 1)$