
Introduction to Simple Linear Regression

Hammad Shaikh

September 30, 2019

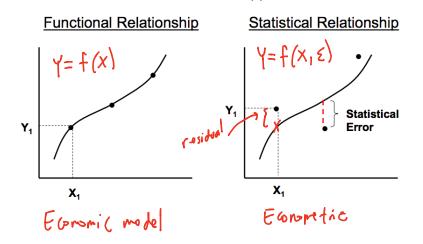
- Empirical analysis in economics is to provide precise quantitative answers to questions of economic interest
 - What is the effect of reducing class size on test scores?
- Economic model relates economic variables of interest to one another using a equation
 - Achievement = f(effort, class size, parental investment)
- Econometric model completes an economic model by specifying any additional uncertainty
 - Achievement = f(effort, class size, parental investment, ϵ)

2/11

Linear regression model

$X \longrightarrow Y$

- $\bullet \ Y = {\sf dependant} \ / \ {\sf outcome} \ / \ {\sf response} \ {\sf variable}$
 - What are plausible Y's in class size reduction policy?
 - Ly YE (test score, Parent satisfaction)


 $\bullet~X = independent~/$ explanatory / predictor variable

- ${\ensuremath{\, \bullet \,}}$ Contains treatment of interest and other factors that effect Y
- What are the X's in class size reduction policy? Ly XE (class Size, Student-teacher varia)
- Simple regression: $Y = \beta_0 + \beta_1 X + \epsilon$ Ly i) Parta $(Y_1 X)_1$ ii) forcertas β_0, β_1 iiii) error

• Multiple regression:
$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \epsilon$$

(lass Size How study

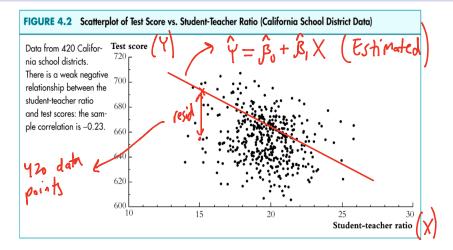
Functional vs. Statistical Relationship

• Regression model describes the statistical relationship between outcome Y and response variable(s) X

Relationship Between X and Y
• The covariance is a measure of the linear association between
X (class size) and Y (test score)
•
$$S_{xy} = \widehat{Cov}(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

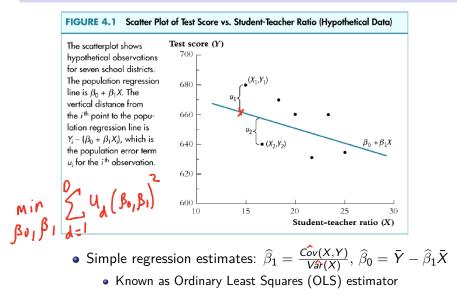
• Units are Units of X × Units of Y (No. of students × Score)
• Hord to interpret magnitude
• $Cov(X,Y) > 0$ means a positive relation between X and Y

 Correlation is a unit less measure of the strength of linear relationship between X and Y


•
$$\rho_{xy} = \frac{S_{xy}}{S_x S_y}$$
 is a number between -1 and 1
• $\rho_{xy} = 1$ means perfect positive linear relationship
whits $Gorr(X,Y) = \frac{Units X \cdot Units Y}{Units Y}$

Simple Regression Example $X \longrightarrow Y$

- Question: What is the relationship between class size and test scores in California? Vhit of obs. is school districts (d)
- Data available from 420 California school districts
 - 5th grade district average math and reading score
 - Student to Teacher Ratio (STR): number of students divided by number of teachers (within district)


• What is the regression model of interest?
Math
$$(nS_1 = \beta_0 + \beta_1 STR_1 + \xi_1$$
 (Population)
 $A \in \{1, 2, ..., 420\}$

Test Score and Student to Teacher Ratio

• We want to model above relationship with a simple linear regression

Estimating Simple Regression

Effect of STR on Achievement • TestScore_d = $\beta_0 + \beta_1 STR_d + \epsilon_d$ (Population) • We want to estimate $\beta_1 = \frac{\triangle TestScore}{\triangle STR}$. Interpret β_1 ? y WHN STR 7 by 1 the impact on trst scores in B1 points on avg. • Line of best fit: TestScored = $\hat{b}_0 + \hat{b}_1 STR_d$ (Estimated) • (\hat{b}_0, \hat{b}_1) found by minimizing $\sum_{i=1}^{n} (TestScore_d - TestScore_d)^2$ 4 OLS • $\hat{b}_1 = \frac{\widehat{Cov}(\text{TestScore}_d, STR_d)}{\widehat{Var}(STR_d)}$ and $\hat{b}_0 = \overline{\text{TestScore}} - \hat{b}_1\overline{STR}$

Effect of STR on Achievement Cont.

• Estimated model:
$$\widehat{TestScore}_d = 698.9 - 2.28STR_d$$

• Primary estimate of interest is $\hat{b}_1 = -2.28$

• Districts with one more student per teacher on average are associated with 2.28 points lower test scores

• How to interpret intercept of
$$\hat{b}_0 = 698.9?$$

. .

10/11