Tutorial: Law of Large Numbers and Central Limit Theorem

Hammad Shaikh

October 27, 2019

1/7

Law of Large Numbers

•
$$E(X_i) = \mu < \infty$$

• What property of the mean estimator does the LLN imply? J_X is $G_{n,j}(x,t) = J_n \cap U(x) = \int_{n-10}^{2^2} J_n \cap U(x) = J_n \cap U(x) = J_n \cap U(x)$

• What can you say about the *t* distribution with df = n? $t_n \xrightarrow{d} N(o_1)$ $\chi_h \xrightarrow{} \chi$

4/7

Central Limit Theorem

- Central limit theorem says that $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ under:
 - The sample is independently and identically drawn (IID) from the population
 - Sample size is sufficiently large

• How does the CLT relate to convergence in distribution? $\overline{X} \sim N(\mathcal{M}, \frac{\delta^{2}}{n}) \Rightarrow \overline{X} - \mathcal{M} \sim N(\mathcal{O}, \delta^{2}/n)$ $\Rightarrow \int_{\mathcal{M}} (\overline{X} - \mathcal{M}) \sim N(\mathcal{O}, \delta^{2}), \quad C \mid T \Rightarrow \mathcal{Z}_{n} \xrightarrow{\delta} N(\mathcal{O}, \delta^{2})$ 5/7

Asymptotic Sampling distribution: Distribution of X_n in large samples
by Used for Hyps. Hyps. to fing to futermine dbn of X_n under H₀
by X ~ N(M, δ²/L, ρ~N(P, P(1-P)), β~N(B, 5²/L(X-F)²)

