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Fitness of Regression Model

R2 measures the proportion of variation in the outcome (Y)
explained by the independent variable(s) (X)

R2 is a number between 0 and 1

R2 = SSR

SST

; SST = Sum of Square Total, SSR = Sum of
Square Regression

SST =
q

n

i=1(y
i

≠ ȳ)2 and SSR =
q

n

i=1(‚y
i

≠ ȳ)2

R2 applies to both simple and multiple linear regression
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Simple Linear Regression Summary

The population linear regression model
Y = —0 + —1X + ‘

Line of best fit and OLS estimator
‚—1 = Cov(X ,Y )

Var(X) and ‚—0 = Ȳ ≠ ‚—1X̄

Hypothesis testing
H0 : —1 = 0 and H1 : —1 ”= 0

Measures of fit for simple regression: ‚y = ‚b0 + ‚b1x
Correlation and R2
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Extending to Multiple Regression

Results from simple linear regression are usually not causal
Other factors that a�ect both X and Y are not considered

Can bias slope estimates (omitted variable bias)

Returns to education: AdultIncome
i

= —0 + —1YrsEduc
i

+ ‘
i

What are some variables in ‘
i

that may bias ‚b1?

Two solutions to help obtain causal result:
1) Randomized control trial, or 2) Multiple regression
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Randomized Control Trial

Simple regression model: Y
i

= —0 + —1X
i

+ ‘
i

In a RCT the Xs are randomly assigned to individuals
No omitted variable bias since X

i

independent to ‘
i

Now

‚b1 has a causal interpretation

Correlation does not imply causation?
Generally true for observational data, but false for experimental
data where treatment variable is randomly assigned

Returns of education: Y
i

= —0 + —1YrsEduc
i

+ ‘
i

Can we randomly assign years of education to individuals?
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Multiple Regression
Slope estimate in simple regression can be biased from
omitted variables related to X and Y

Solution is to include the omitted variables into the model

Multiple regression: Y = —0 + —1X1 + —2X2 + . . . + —
k

X
k

+ ‘
—1 = e�ect of changing X1 on Y holding X2, . . . , X

k

constant
‚b1 can be causal if all relevant variables are included

Conditional independence: ‘ indep. to X1 given X2, . . . , X
k

Returns to education:
Y

i

= —0 + —1YrsEduc
i

+ —2Exp
i

+ —3ParentIncome
i

+ ‘
i
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Regression Table Example

Table: Income and Health Returns to Education (Fake Data)

Hourly Wage Hourly Wage Years Lived Years Lived
Constant 11*** 10*** 65*** 66***

(2.5) (0.1) (10) (10)
Years of Educ 2*** 1*** 2*** 3***

(0.5) (0.1) (0.25) (0.3)
Experience 3*** 0.5**

(0.8) (0.245)
Parent income ($1000) 0.1** 0.15*

(0.048) (0.075)
R-square 0.15 0.30 0.10 0.20
No. of indivisuals 15000 15000 15000 15000

Stars denote level of significance

ú
10%,úú

5%, and

úúú
1%.

Regression table generally contain coe�cient estimates,
standard errors, no. of observations, and R2
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"Partialing Out" Idea

Suppose we want to make scatter plot of earnings on
education but adjust for parental education

Step 1: We need to obtain variation in education that is
independant of the parental education

Step 2: Related earnings on the variation obtained in step 1.
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Summary of Linear Regression

Goal: examine causal relationship between outcome Y and
explanatory variable X

Simple linear regression is a good starting point
Slope estimate is likely biased due to omitted variables that
e�ect both X and Y

Experiments (RCTs) are ideal for determining causal
relationship between X and Y

Costly and sometimes unfeasable

Multiple regression can control for several relevant variables
Obtain causal relationship under conditional independance
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