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Fitness of Regression Model
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@ R? measures the proportion of variation in the outcome ()
explained by the independent variable(s) (X)

e R?is a number between 0 and 1
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o R? = 2%, SST = Sum of Square Total, SSR = Sum of

Square Regression
o SST = 37,(y; — 7)? and SSR = 321, (¥ — ¥)?

@ R? applies to both simple and multiple linear regression



Simple Linear Regression Summary

@ The population linear regression model
o Y =00+ MhX+e

Y poran: B Py

@ Line of best fit and OLS estimator
o B =G and fo = ¥ - BiX (Y- }4,+J3,

@ Hypothesis testing
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@ Measures of fit for simple regression: y = Bo + bix
o Correlation and R?
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Extending to Multiple Regressi """‘-
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@ Results from simple linear regression are usually not causal
o Other factors that affect both X and Y are not considered

o Can bias slope estimates (\omitted variable bias)
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o Returns to education: Adultinéome; = Sy + 81 YrsEduc; + €;

e What are some variables in ¢; that may bias Bl? (N
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@ Two solutions to help obtain causal result:
o 1) Randomized control trial, or 2) Multiple regression
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Randomized Control Trial (X ranglom dssigh =) X J.Z\
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@ Simple regression model: Y; = 8o + 1 X; + € /-,
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@ In a RCT the Xs are randomly assigned to individuals
e No omitted variable bias since X; independent to ¢;

o Now Bl has a causal interpretation
. A
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@ Correlation does not imply causation?

o Generally true for observational data, but false for experimental
data where treatment variable is randomly assigned

@ Returns of education: Y; = g + (1 YrsEduc; + €;
e Can we randomly assign years of education to individuals?
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@ Slope estimate in simple regression can be biased from
omitted variables related to X and Y

Multiple Regression

e Solution is to include the omitted variables into the model

@ Multiple regression: Y = Bo + 51.X1 + 8o Xo + ... + Bi Xk + €
e 31 = effect of changing X; on Y holding X3,..., X\ constant
° Bl can be causal if all relevant variables are included
o Conditional independence: € indep. to Xi given X, ..., Xk

° Rewiwmation: (metiva ﬁm)
Y; = By + 51 YrsEduc; + B> Exp; + B3ParentIncome; + ¢;
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Regression Table Example @3@ A leh'p" ny.

Table: Income and Health Returns to Edugtion (Fake Data)@

0) &) V
Hourly Wage Hourly Wage Years Lived Years Lived
Constant 11k 10%%* 65+** orer
(2.5) (0.1) (10) (10)
Years of Educ 2%k 1HR¥* 2%*¥ 3rkx
(0.5) (0.1) (0.25) (0.3)
X Experience S E b Kl 0.5%*
- . .
(0.8) (0.245)
Parent income ($1000) t= l" 0.1%* 0.15*
(0.048) (0.075)
R-square 0.15 0.30 0.10 0.20
No. of indivisuals 15000 15090_, 15000 15000
Stars denote level of significance *10%,** 5%, and ***1%. V
N7 1e00

@ Regression table generally contain coefficient estimates,
standard errors, no. of observations, and R2
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@ Suppose we want to make scatter plot of earnings on
education but adjust for parental education

Eorn = po—l— [ ¥ Educ + P PE T s

@ Step 1: We need to obtain variation in education that is
independant of the parental education \
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@ Step 2: Related earnings on the variation obtained in step 1.
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Summary of Linear Regression

@ Goal: examine causal relationship between outcome Y and
explanatory variable X

@ Simple linear regression is a good starting point

o Slope estimate is likely biased due to omitted variables that
effect both X and Y

@ Experiments (RCTs) are ideal for determining causal
relationship between X and Y

e Costly and sometimes unfeasable

@ Multiple regression can control for several relevant variables
e Obtain causal relationship under conditional independance
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