

Inferential Statistics Overview

- Population: set of all items (ex. individuals) of interest
 UTMeLon groduates
- Parameter: number describing a characteristic about the population

• Sample: subset of the population 4 N= los VTM eGN grads

• Statistic: number describing a characteristic about the sample

Ly Deta: $x_1, x_2, \dots, x_{loo} \rightarrow \overline{\chi} = \frac{i\chi_i}{h}$

		Table: Grade 4 Achievement Outcomes					
		Student	Math	Reading	Science	Grade Joana Grade	
High	(Hammad	80	70	60	4	
MALIL	ł	Alex	65	75	85	4	
UNITS		:	÷	÷	÷	÷	
		Bob	60	70	80	4	
	× .						

- Variables are math, reading, and science test scores
- Time period in this context is grade 4
- Unit of observation is students

Time Series Data Example (Follow ore vnit) Studied more in ECO475

Table: Annual Average GPA for UTM

School	Average GPA	Year
UTM	3.45	2000
÷	:	÷
UTM	3.61	2018

What is the variable?

Ly Aug. GPA

• What is the time period?

• What is the unit of observation?

Table: Educational Attainment in Canada

Province	HS Graduation Rate	Years of Education	Year
Ontario	70	13	2000
÷	:	÷	÷
Ontario	86.5	16	2018
÷	:	:	÷
Alberta	55	10	2000
÷	:	÷	÷
Alberta	70	14	2018
		all R Var I	Jur

• What are the variables? Grad rate & Yrs of educ.

- What is the time period? Year
- What is the unit of observation? לוסעוֹתעַל

Summary Statistics

- The first table in a research paper generally describes the data
 - Known as the "Summary Stats" table
- Common statistics used to describe variables:
 - Central tendency: mean and median

• mean:
$$\bar{X} = \frac{x_1 + \ldots + x_n}{n}$$

• Variability: variance, standard deviation, and range • variance: $Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$ $\int Gage = Ma X (X) - Min (X)$ Example of Summary Statistics Table

Summary Stats. of real survey data from U.S.

Variable	Mean	Std. Dev.	Min.	Max.	N
Male Student	0.512	0.5	0	1	21396
Age (months)	65.48	4.29	54	79	18066
No. Books	72.79	59.52	0	200	17912
Non-english	0.14	0.35	0	1	20007

Table: Summary Statistics of Kindergarten Students

• How big is the data?

Around 21000 students

• Why are the N's different?

Missing values due to non-survey response • Average student owns 73 books? Government of large voriance

Random Variables

- Random process: A procedure, involving a population, that can conceptually be repeated, and produces outcomes
- A random variable assigns a number to each outcome of a random process
 - Discrete RV takes on finite number of values

4 letter grade or hPA in course

Continuous RV takes on infinite number of values

4 Course aug. or Salary

Distribution of Random Variables (2) $X \sim N(M_1 S^2)$

- Random variables (RVs) are associated with probability distribution function (pdf)
 - The pdf characterizes the likelihood that the RV takes on values in a particular set

- RVs are usually denoted by capital letters (X) and their realizations are lower case (x)
- Samples are drawn from the population distribution
 - Sample of size n: x_1, \ldots, x_n

Estimator: $f(X_1, X_2, ..., X_n) \sim F$ • Recall population parameters are typically unknown • Population in economics are generally very large $L_3 M = arg$. salary of UTM grod

- Estimator: a function of the observed RVs $\widehat{X_n}$ that is informative about the population parameter
 - Is an estimator associated with a probability distribution?

45 Kes, since diff. sample -> diff. estimates

- Estimate: a realization of $\widehat{X_n}$ obtained by evaluating the estimator at a particular data set
 - Different samples will likely lead to different estimates

4 Obn represent uncertainty in estimates

Properties of Estimators

• Suppose the population mean is μ and $\widehat{X_n}$ is its estimator

 Unbiasedness: on average the estimator is right • $E(\widehat{X_n}) = \mu$ for all n Mean of many samply estimates approx
 the popⁿ param.
 Consistency: the truth is eventually discovered • As $n \to \infty$ then $\widehat{X_n} \xrightarrow{p} \mu$ (convergence in probability) • A bit more formally, as $n \to \infty$, then $Pr(\widehat{X_n} \to \mu) = 1$ Pop $n_1 < n_2 < n_3$

- The distribution of a estimator X_n is called the "Sampling distribution"
 - Sampling distribution models uncertainty in the estimates produced from varying samples
- We are often interesting in the sampling distribution of \bar{X} $\forall \bar{X} \text{ vied } \neq_0 \text{ infer } \mathcal{M}$
- Central limit theorem says that $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ under:
 - The sample is independently and identically drawn (IID) from the population
 - Sample size is sufficiently large

12/13

- Want to estimate average salary of UTM graduate
 - Parameter of interest: μ = average salary of all UTM graduates (suppose there are N total graduates)
 - Estimate µ using X
 = average salary for n graduates (note n is usually much smaller than N)

• If CLT holds, is
$$\overline{X}$$
 a consistent and unbiased estimator of μ ?
i) unbiased: $\overline{E}(\overline{X}) = \mathcal{M}_1$, $\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{N}$
 $\overline{F}(\overline{X}) = \frac{\overline{E}(X_1) + \overline{E}(X_2) + \dots + \overline{E}(X_n)}{N} = \frac{N \cdot \mathcal{M}}{N} = \mathcal{M}$

Repeately draw samples and obtain: $\overline{X}_{1}, \overline{X}_{2}, \overline{X}_{3}, \dots, \overline{X}_{100}$ Hist pbn of \overline{X} (sampling dbn)