Introduction to Econometrics: Linear Regression

Hammad Shaikh

January 11, 2018

Regression Overview

- **•** Empirical analysis in economics is to provide precise quantitative answers to questions of economic interest
	- What is the effect of reducing class size on test scores?

- Economic model relates economic variables of interest to one another using a equation
	- Achievement $=$ f(effort, class size, parental investment)

- Econometric model completes an economic model by specifying any additional uncertainty
	- Achievement = f(effort, class size, parental investment, ϵ)

 Σ is RV_1 assume $\Sigma \sim N(o_i\delta_i)$

Linear regression model

- \bullet Y = dependant / outcome / response variable
	- What are plausible Y's in class size reduction policy?

 $\bullet X =$ independent / explanatory / predictor variable

Contains treatment of interest and other factors that effect Y

Tast Swork, Completion Rate, Parent Satisfition

- What are the X's in class size reduction policy?
- Class size, Strohnt-Teacher ratio
	- Simple regression: $Y = \beta_0 + \beta_1 X + \epsilon$ Paran. Bo, SI (unknown)

• Multiple regression: $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \epsilon$

Otherinpots: Hours study, Park ut investory

Functional vs. Statistical Relationship

Regression model describes the statistical relationship between outcome Y and response variable(s) X

Relationship Between X and Y $\frac{V}{V}$ $\frac{L_{ov}(X, Y) \cdot \sigma}{\sqrt{2}}$

- The covariance is a measure of the linear association between X (class size) and Y (test score)
	- $S_{xy} = \widehat{Cov}(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$
	- Units are Units of $X \times$ Units of Y (No. of students \times Score)
- $Cov(X,Y) > 0$ means a positive relation between X and Y
- Correlation is a unit less measure of the strength of linear relationship between X and Y

•
$$
\rho_{xy} = \frac{S_{xy}}{S_x S_y}
$$
 is a number between -1 and 1

 $\rho_{xy} = 1$ means perfect positive linear relationship

Simple Regression Example

Question: What is the relationship between class size and test scores in California?

- Data available from 420 California school districts
	- 5th grade district average math and reading score \forall
	- Student to Teacher Ratio (STR): number of students divided by number of teachers (within district) \bigvee

• What is the regression model of interest?

$$
Sort_{x} = \beta_{0} + B_{1}STR_{x} + \epsilon
$$

Test Score and Student to Teacher Ratio

We want to model above relationship with a simple linear regression

Estimating Simple Regression

- Simple regression estimates: $\widehat{\beta}_1 = \frac{Cov(X,Y)}{Var(X)}$ $\frac{\partial \mathcal{O}(X, Y)}{\partial \mathcal{A}(X)}, \ \widehat{\beta}_0 = \bar{Y} - \widehat{\beta}_1 \bar{X}$
	- Known as Ordinary Least Squares (OLS) estimator

Effect of STR on Achievement

\n- \n
$$
\text{TestScore}_d = \beta_0 + \beta_1 \text{STR}_d + \epsilon_d
$$
\n
\n- \n $\text{We want to estimate } \beta_1 = \frac{\triangle \text{TestScore}}{\triangle \text{STR}}$. Interpret β_1 ?\n
\n- \n $\beta \setminus i \leq \text{AVQ}$. $\text{Chun } \gamma \setminus \text{V}$ $\text{H} \setminus \text{S} \cup \text{P}$ $\text{W} \setminus \text{N}$ \n
\n- \n $\text{S} \uparrow \text{R} \downarrow \text{S} \downarrow \text{V}$ \n
\n- \n $\text{Line of best fit: TestScore}_d = \hat{b}_0 + \hat{b}_1 \text{STR}_d$ \n
\n- \n (\hat{b}_0, \hat{b}_1) found by minimizing $\sum_{i=1}^n (\text{TestScore}_d - \text{TestScore}_d)^2$ \n
\n- \n $\text{V} \downarrow \text{S} \cdot \text{V} \vee \text{V} \downarrow \text{V}$ \n
\n- \n $\text{O} \downarrow \text{S} \cdot \text{S$

Effect of STR on Achievement Cont. with large classes

• Districts with larger class sizes (higher STR) are associated WQ with lower test scores

Effect of STR on Achievement Cont.

$$
Pr(f) \cdot cH d + C f f \leq c_0 f C
$$
\n• Estimated model:
$$
TestScore_d = 698.9 - 2.28STR_d
$$
\n
$$
\sqrt{re^{0} + b_0 f} + f
$$

• Primary estimate of interest is $\hat{b}_1 = -2.28$

Districts with one more student per teacher on average are associated with 2.28 points lower test scores
School districts will be effected differently
from 1 class size. Bis avg. in pact acords all districts \bullet How to interpret intercept of $\hat{b}_0 = 698.9$?

Since STRato not in data the re
no meaningful method rather than for
$$
h_0
$$

Properties of Slope Estimator

- We generally want estimators to be unbiased and consistent
	- Slope estimator $\widehat{\beta}_1$ unbiased if $E(\widehat{\beta}_1) = \beta_1$
	- Slope estimator $\widehat{\beta}_1$ consistent if $\widehat{\beta}_1 \stackrel{p}{\to} \beta_1$ as *n* grows large

Simple Linear Regression and Hypothesis Testing

• Simple linear regression: $TestScore_d = \beta_0 + \beta_1 STR_d + \epsilon_d$

- *β*⁰ (intercept) and *β*¹ (slope) are unknown parameters
- Use sample $(STR_d, TestScore_d)_{d=1}^n$ to make inference about

the simple linear regression parameters
Possible $B_1=0$, but draw $A_1 < 0$ from Ouestion: How much can we trust the primary estimate b_1 ?
 $\bigwedge_{P \in \mathcal{P}} c \leftarrow \bigwedge_{P} c \setminus \bigwedge_{P} c \$

- Null Hypothesis: Class size has no effects on achievement μ_{0} : $\beta_{1} = 0$
- Alternative Hypothesis: Class size effects achievement \sharp ,: \sharp , \neq 0

SLR and Hypothesis Testing Cont.

Under H_0 : $\beta_1 = 0$ we have $\widehat{\beta}_1 \sim \mathcal{N}(0, \frac{\sigma_\epsilon^2}{\sum_{i=1}^n (X_i - \bar{X})^2})$

Since ϵ unknown, σ_{ϵ}^2 is also unknown. The solution is to replace it with s_e^2 , the sample variance of the residuals $s_e^2 = \frac{1}{N} 2e_1^2$, $e_i = y_i - y_i$

PUMVY

 \mathcal{D}

If H_1 : $\beta_1 \neq 0$ we compute p-value $= 2 * Pr(\beta_1 > b_1)$

 \widehat{b}_1 is very significant if p-value < 0.01 , significant if p-value $<$ 0.05, and marginally significant if p-value < 0.1

Computing p-value involves $\mathit{SE}(\widehat{b_1}) = \sqrt{\mathit{Var}(\widehat{\beta_1})}$

Typically (not always) if $\frac{b_1}{5F(i)}$ $\frac{b_1}{SE(\hat{b}_1)}$ > 2 then b_1 is significant
- \overrightarrow{D}

• P-value ≈ 0 for class size application

Fitness of Regression Model

- R^2 measures the proportion of variation in the outcome (Y) explained by the independent variable(s) (X)
	- R^2 is a number between 0 and 1
	- $R^2=1$ means regression model perfectly fits the data
- $R^2 = \frac{SSR}{SST}$; SST $=$ Sum of Square Total, SSR $=$ Sum of Square Regression
	- $\text{SST} = \sum_{i=1}^{n} (y_i \bar{y})^2$ and $\text{SSR} = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ $R²$ applies to both simple and multiple linear regression

Simple Linear Regression Summary

- The population linear regression model
	- $Y = \beta_0 + \beta_1 X + \epsilon$ **B**₁ *R* (*B*) *D*₁ *b*₁ *M*²(*PCS*)
- **o** Line of best fit and OLS estimator $\widehat{\beta}_1 = \frac{\text{Cov}(X,Y)}{\text{Var}(X)}$ $\frac{\partial v(X,Y)}{\partial ar(X)}$ and $\widehat{\beta}_0 = \bar{Y} - \widehat{\beta}_1 \bar{X}$
- Hypothesis testing
	- H_0 : $\beta_1 = 0$ and H_1 : $\beta_1 \neq 0$
- \bullet Measures of fit for simple regression: $\hat{v} = \hat{b}_0 + \hat{b}_1x$
	- Correlation and R^2

Extending to Multiple Regression

- $Y^{\underline{\mathcal{K}}}_{-}$ β_{n} + β_{1}
- Results from simple linear regression are usually not causal
	- Many other factors that affect both X and Y are not accounted for in the model
		- Can bias slope estimates (omitted variable bias)
	- \sum related to X is problem

• Returns to education: AdultIncome_i = $\beta_0 + \beta_1$ YrsEduc_i + ϵ_i What are some variables in ϵ_i that may bias \hat{b}_1 ?

Type r in $\mathcal{R} = \begin{cases} 7 \text{ J} \text{m} \cdot \text{m} \\ \text{J} \cdot \text{E} \cdot \text{J} \cdot \text{m} \end{cases}$ Then Inc = $\begin{cases} 7 \text{ Ed} \cdot \text{m} \\ \text{J} \cdot \text{m} \cdot \text{m} \end{cases}$ other: Ability, motivation

- Two solutions to help obtain causal result:
	- 1) Randomized control trial, or 2) Multiple regression

Multiple Regression

- Slope estimate in simple regression can be biased from omitted variables related to X and Y
	- Solution is to include the omitted variables into the model
- \rightarrow Compagne preadle w/ h : \overline{x} X, and same $x_{2},...,x_{R}$
	- Multiple regression: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$
		- β_1 = effect of changing X_1 on Y holding X_2, \ldots, X_k constant
		- \bullet b_1 can be causal if all relevant variables are included

• Conditional independence: ϵ indep. to X_1 given X_2, \ldots, X_k

 1 ⁿ λ ⁿ ρ . Given X_{λ_1} \ldots X_{λ_n} λ_n λ_n and related to X_1

• Returns to education: $Y_i = \beta_0 + \beta_1$ YrsEduc_i + β_2 Exp_i + β_3 ParentIncome_i + ϵ_i

Indig; Yug Educ not related to I if how Exp_{1} S fant in worl
 D P_{loop} m ! Motivation still commited

Regression Table Example

Table: Income and Health Returns to Education (Fake Data)

Stars denote level of significance [∗]10%*,* ∗∗ 5%*,* and ∗∗∗1%*.*

• Regression table generally contain coefficient estimates, standard errors, no. of observations, and R^2

Summary of Linear Regression

- Goal: examine causal relationship between outcome Y and explanatory variable X
- Simple linear regression is a good starting point
	- Slope estimate is likely biased due to omitted variables that effect both X and Y
- Experiments (RCTs) are ideal for determining causal relationship between X and Y
	- Costly and sometimes unfeasable
- Multiple regression can control for several relevant variables
	- Obtain causal relationship under conditional independance