Introduction to Econometrics: Linear Regression

Hammad Shaikh

January 11, 2018

Regression Overview

- Empirical analysis in economics is to provide precise quantitative answers to questions of economic interest
 - What is the effect of reducing class size on test scores?

- Economic model relates economic variables of interest to one another using a equation
 - Achievement = f(effort, class size, parental investment)

- Econometric model completes an economic model by specifying any additional uncertainty
 - Achievement = f(effort, class size, parental investment, ϵ)

EisRV, assume ENN(0,82)

Linear regression model

- Y = dependant / outcome / response variable
 - What are plausible Y's in class size reduction policy?

 $\bullet \ X = independent \ / \ explanatory \ / \ predictor \ variable \\$

• Contains treatment of interest and other factors that effect Y

Test swork, Completion Rate, Parent Satisfition

- What are the X's in class size reduction policy?
- Class size, Student-Teacher ratio
 - Simple regression: $Y = \beta_0 + \beta_1 X + \epsilon$ Param, B_0 , S_1 (where M)

• Multiple regression: $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \epsilon$

Other inputs: Hours study Parent investment

Functional vs. Statistical Relationship

 Regression model describes the statistical relationship between outcome Y and response variable(s) X

Relationship Between X and Y $\begin{pmatrix} V \\ V \end{pmatrix}$

• The covariance is a measure of the linear association between X (class size) and Y (test score)

•
$$S_{xy} = \widehat{Cov}(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Units are Units of X \times Units of Y (No. of students \times Score)
- $\bullet~\mbox{Cov}(X,Y)>0$ means a positive relation between X and Y
- Correlation is a unit less measure of the strength of linear relationship between X and Y

•
$$\rho_{xy} = \frac{S_{xy}}{S_x S_y}$$
 is a number between -1 and 1

• $\rho_{xy} = 1$ means perfect positive linear relationship

Simple Regression Example

• Question: What is the relationship between class size and test scores in California?

- Data available from 420 California school districts
 - 5th grade district average math and reading score γ
 - Student to Teacher Ratio (STR): number of students divided by number of teachers (within district)

• What is the regression model of interest?

Test Score and Student to Teacher Ratio

We want to model above relationship with a simple linear regression

Estimating Simple Regression

- Simple regression estimates: $\hat{\beta}_1 = \frac{Cov(X,Y)}{Var(X)}, \ \hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{X}$
 - Known as Ordinary Least Squares (OLS) estimator

Effect of STR on Achievement

• TestScore_d =
$$\beta_0 + \beta_1 STR_d + \epsilon_d$$

• We want to estimate $\beta_1 = \frac{\triangle TestScore}{\triangle STR}$. Interpret β_1 ?
 $\beta_1 i_S \ \text{dVg.}$ Change in that Slore when
 $S TR_J \ \text{gors} \ \text{VP} \ \text{by J.}$
• Line of best fit: $TestScore_d = \hat{b}_0 + \hat{b}_1 STR_d$
• (\hat{b}_0, \hat{b}_1) found by minimizing $\sum_{i=1}^{n} (TestScore_d - TestScore_d)^2$
 $V = (Si \ \text{dVal} \ \text{e}_J)^2$
• $\hat{b}_1 = \frac{\widehat{Cov}(TestScore_d, STR_d)}{\widehat{Var}(STR_d)}$ and $\hat{b}_0 = \overline{TestScore} - \hat{b}_1 \overline{STR}$
 $P \mid v_J \text{ in data to find } \hat{b}_1, \hat{b}_0$

-> Not causal since districts may have lower schol

- - Districts with larger class sizes (higher STR) are associated in Ovis with lower test scores

Effect of STR on Achievement Cont.

• Estimated model:
$$TestScore_d = 698.9 - 2.28STR_d$$

like of bust fit

• Primary estimate of interest is $\widehat{b}_1 = -2.28$

• Districts with one more student per teacher on average are associated with 2.28 points lower test scores S < hool districts will be effected differentlyfrom 1 class size. b, is avg. in part accouss all districts $• How to interpret intercept of <math>\hat{b}_0 = 698.9?$

Since STRA=0 not in data there no meaningful interpretation for bo. 11/21

Properties of Slope Estimator

- We generally want estimators to be unbiased and consistent
 - Slope estimator $\widehat{\beta}_1$ unbiased if $E(\widehat{\beta}_1) = \beta_1$
 - Slope estimator $\widehat{\beta}_1$ consistent if $\widehat{\beta}_1 \xrightarrow{p} \beta_1$ as *n* grows large

Simple Linear Regression and Hypothesis Testing

• Simple linear regression: $TestScore_d = \beta_0 + \beta_1 STR_d + \epsilon_d$

- β_0 (intercept) and β_1 (slope) are unknown parameters
- Use sample $(STR_d, TestScore_d)_{d=1}^n$ to make inference about the simple linear regression parameters

Possible $B_1=0$, but draw $\hat{b}_1 < 0$ from $\frac{1}{\hat{b}_1}$. • Question: How much can we trust the primary estimate \hat{b}_1 ? More trust in \hat{b}_1 if $Var(\hat{B}_1)$ smaller

- Alternative Hypothesis: Class size effects achievement μ_{1} ; μ_{2} ; μ_{1}

SLR and Hypothesis Testing Cont.

• Under $H_0: \beta_1 = 0$ we have $\widehat{\beta}_1 \sim N(0, \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n (X_i - \overline{X})^2})^{-1}$

- Since ϵ unknown, σ_{ϵ}^2 is also unknown. The solution is to replace it with s_e^2 , the sample variance of the residuals
 - $S_{e}^{2} = \frac{1}{n} 2e_{i}^{2} + e_{i}^{2} = \frac{1}{n} 2e_{i}^{2} + e_{i}^{2} = \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{$

PVINNE

O

- If H₁: β₁ ≠ 0 we compute p-value = 2 * Pr(β̂₁ > b̂₁)
 β̂₁ is very significant if p-value < 0.01, significant if p-value <
 - 0.05, and marginally significant if p-value < 0.1 $\,$
- Computing p-value involves $SE(\widehat{b_1}) = \sqrt{Var(\widehat{eta_1})}$
 - Typically (not always) if $|\frac{\widehat{b_1}}{SE(\widehat{b_1})}| > 2$ then $\widehat{b_1}$ is significant $t_{stat} = \underbrace{b_1 - 0}_{column}$

• P-value \approx 0 for class size application

Fitness of Regression Model

- R^2 measures the proportion of variation in the outcome (Y) explained by the independent variable(s) (X)
 - R^2 is a number between 0 and 1
 - $R^2 = 1$ means regression model perfectly fits the data
- $R^2 = \frac{SSR}{SST}$; SST = Sum of Square Total, SSR = Sum of Square Regression
- $SST = \sum_{i=1}^{n} (y_i \bar{y})^2$ and $SSR = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ Var. in i explained by wold • R^2 applies to both simple and multiple linear regression

Simple Linear Regression Summary

- The population linear regression model
 - $Y = \beta_0 + \beta_1 X + \epsilon$ By prom of interest
- Line of best fit and OLS estimator • $\hat{\beta}_1 = \frac{Cov(X,Y)}{Var(X)}$ and $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$
- Hypothesis testing
 - $H_0: \beta_1 = 0$ and $H_1: \beta_1 \neq 0$
- Measures of fit for simple regression: $\widehat{y} = \widehat{b}_0 + \widehat{b}_1 x$
 - Correlation and R²

Extending to Multiple Regression

- Y= B, + B1X + 2
- Results from simple linear regression are usually not causal
 - Many other factors that affect both X and Y are not accounted for in the model
 - Can bias slope estimates (omitted variable bias)
 - Evenuted to X is problem

• Returns to education: $AdultIncome_i = \beta_0 + \beta_1 YrsEduc_i + \epsilon_i$ • What are some variables in ϵ_i that may bias \hat{b}_1 ? $\uparrow Experince = \begin{cases} \uparrow I_{\text{INUM}} & \uparrow P_{\text{EM}} \\ I_{\text{Edvc}} & \uparrow P_{\text{Edv}} \\ I_{\text{Edvc}} & \uparrow I_{\text{Edvc}} \\ \uparrow I_{\text{INC}} \\ \uparrow I_{\text{Edvc}} \\ \uparrow I_{\text{Edvc}} \end{cases}$

- Two solutions to help obtain causal result:
 - 1) Randomized control trial, or 2) Multiple regression

Multiple Regression

- Slope estimate in simple regression can be biased from omitted variables related to X and Y
 - Solution is to include the omitted variables into the model
- -> Compare prople w/ Niff X1, but same X2,..., XR
 - Multiple regression: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$
 - $\beta_1 = \text{effect of changing } X_1 \text{ on } Y \text{ holding } X_2, \dots, X_k \text{ constant}$
 - b_1 can be causal if all relevant variables are included

• Conditional independence: ϵ indep. to X_1 given X_2,\ldots,X_k

Indep: Given X2,..., XR, 2 port related to X1

• Returns to education: $Y_i = \beta_0 + \beta_1 YrsEduc_i + \beta_2 Exp_i + \beta_3 ParentIncome_i + \epsilon_i$

Endly: YrsEduc not related to z if how Exp. & bent in whe D Prongen! Motivation still Ommited

Regression Table Example

ion Table Example Extra yr of educ associated with \$1 hight way on avg, Table: Income and Health Returns to Education (Fake Data) 2 print Hourly Wage Hourly Wage Years Lived Years Lived Mich.

	Y	' 5	Hourly Wage	Hourly Wage	Years Lived	Years Lived
	Constant		11*** (2 5)	10*** (0.1)	65*** (10)	66*** (10)
	Years of Educ	2	→ ^{2***}	1***	2***	3***
	Experience	U	(0.5)	(0.1) 3***	(0.25)	(0.3) 0.5**
	Parent income (\$1000)		se(b,)	(0.8) 0.1** 0.048		(0.245) 0.15* 0.075
	R-square No. of indivisuals		0.15 15000	0.30 15000	0.10 15000	0.20 15000

Stars denote level of significance *10%,** 5%, and ***1%.

 Regression table generally contain coefficient estimates, standard errors, no. of observations, and R^2

Summary of Linear Regression

- Goal: examine causal relationship between outcome Y and explanatory variable X
- Simple linear regression is a good starting point
 - $\bullet\,$ Slope estimate is likely biased due to omitted variables that effect both X and Y
- Experiments (RCTs) are ideal for determining causal relationship between X and Y
 - Costly and sometimes unfeasable
- Multiple regression can control for several relevant variables
 - Obtain causal relationship under conditional independance